Lösung 2.2:3f
Aus Online Mathematik Brückenkurs 2
K (Lösning 2.2:3f moved to Solution 2.2:3f: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | Let's rewrite the integral somewhat: |
- | < | + | |
- | {{ | + | |
+ | <math>2\sin \sqrt{x}\centerdot \frac{1}{2\sqrt{x}}</math> | ||
+ | |||
+ | |||
+ | Here, we see that the factor on the right, | ||
+ | <math>\frac{1}{2\sqrt{x}}</math> | ||
+ | is the derivative of the expression | ||
+ | <math>\sqrt{x}</math>, which appears in the factor on the left, | ||
+ | <math>2\sin \sqrt{x}</math> | ||
+ | With the substitution | ||
+ | <math>u=\sqrt{x}</math>, the integrand can therefore be written as | ||
+ | |||
+ | |||
+ | <math>2\sin u\centerdot {u}'</math> | ||
+ | |||
+ | |||
+ | and the integral becomes | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \int{\frac{\sin \sqrt{x}}{\sqrt{x}}}\,dx=\left\{ \begin{matrix} | ||
+ | u=\sqrt{x} \\ | ||
+ | du=\left( \sqrt{x} \right)^{\prime }\,dx=\frac{1}{2\sqrt{x}}\,dx \\ | ||
+ | \end{matrix}\, \right\} \\ | ||
+ | & =2\int{\sin u\,du} \\ | ||
+ | & =-2\cos u+C \\ | ||
+ | & =-2\cos \sqrt{x}+C \\ | ||
+ | \end{align}</math> |
Version vom 15:38, 28. Okt. 2008
Let's rewrite the integral somewhat:
\displaystyle 2\sin \sqrt{x}\centerdot \frac{1}{2\sqrt{x}}
Here, we see that the factor on the right,
\displaystyle \frac{1}{2\sqrt{x}}
is the derivative of the expression
\displaystyle \sqrt{x}, which appears in the factor on the left,
\displaystyle 2\sin \sqrt{x}
With the substitution
\displaystyle u=\sqrt{x}, the integrand can therefore be written as
\displaystyle 2\sin u\centerdot {u}'
and the integral becomes
\displaystyle \begin{align}
& \int{\frac{\sin \sqrt{x}}{\sqrt{x}}}\,dx=\left\{ \begin{matrix}
u=\sqrt{x} \\
du=\left( \sqrt{x} \right)^{\prime }\,dx=\frac{1}{2\sqrt{x}}\,dx \\
\end{matrix}\, \right\} \\
& =2\int{\sin u\,du} \\
& =-2\cos u+C \\
& =-2\cos \sqrt{x}+C \\
\end{align}