Lösung 2.2:3b
Aus Online Mathematik Brückenkurs 2
K |
|||
Zeile 1: | Zeile 1: | ||
- | If we to succeed in simplifying the integral with a substitution, we must find an expression | + | If we are to succeed in simplifying the integral with a substitution, we must find an expression <math>u = u(x)</math> so that the integral can be written as |
- | <math>u=u | + | |
- | so that the integral can be written as | + | |
- | + | {{Displayed math||<math>\int \left(\begin{matrix} | |
- | <math>\int | + | \text{something}\\ |
- | \text{something} | + | \text{in u} |
- | \text{in} | + | \end{matrix}\right)\cdot {u}'\,dx\,\textrm{.}</math>}} |
- | \end{matrix} \right) | + | |
As our integral is written, | As our integral is written, | ||
+ | {{Displayed math||<math>\int\sin x\cos x\,dx</math>}} | ||
- | + | we see that the second factor <math>\cos x</math> is a derivative of the first factor, <math>\sin x</math>. If <math>u=\sin x</math>, the integral can thus be written as | |
- | + | ||
- | + | ||
- | we see that the second factor | + | |
- | <math>\cos x</math> | + | |
- | is a derivative of the first factor, | + | |
- | <math>\sin x</math>. If | + | |
- | <math>u=\ | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | {{Displayed math||<math>\int u\cdot u'\,dx</math>}} | |
- | <math>u | + | |
- | + | ||
+ | and this makes <math>u=\sin x</math> an appropriate substitution, | ||
- | <math>\begin{align} | + | {{Displayed math||<math>\begin{align} |
- | + | \int \sin x\cos x\,dx | |
- | u=\ | + | &= \left\{ \begin{align} |
- | du= | + | u &= \sin x\\[5pt] |
- | \end{ | + | du &= (\sin x)'\,dx = \cos x\,dx |
- | & =\int | + | \end{align} \right\}\\[5pt] |
- | & =\frac{1}{2}\sin ^ | + | &= \int u\,du\\[5pt] |
- | \end{align}</math> | + | &= \frac{1}{2}u^{2} + C\\[5pt] |
+ | &= \frac{1}{2}\sin^2\!x + C\,\textrm{.} | ||
+ | \end{align}</math>}} |
Version vom 14:15, 28. Okt. 2008
If we are to succeed in simplifying the integral with a substitution, we must find an expression \displaystyle u = u(x) so that the integral can be written as
\displaystyle \int \left(\begin{matrix}
\text{something}\\ \text{in u} \end{matrix}\right)\cdot {u}'\,dx\,\textrm{.} |
As our integral is written,
\displaystyle \int\sin x\cos x\,dx |
we see that the second factor \displaystyle \cos x is a derivative of the first factor, \displaystyle \sin x. If \displaystyle u=\sin x, the integral can thus be written as
\displaystyle \int u\cdot u'\,dx |
and this makes \displaystyle u=\sin x an appropriate substitution,
\displaystyle \begin{align}
\int \sin x\cos x\,dx &= \left\{ \begin{align} u &= \sin x\\[5pt] du &= (\sin x)'\,dx = \cos x\,dx \end{align} \right\}\\[5pt] &= \int u\,du\\[5pt] &= \frac{1}{2}u^{2} + C\\[5pt] &= \frac{1}{2}\sin^2\!x + C\,\textrm{.} \end{align} |