Lösung 2.2:3b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
If we to succeed in simplifying the integral with a substitution, we must find an expression
+
If we are to succeed in simplifying the integral with a substitution, we must find an expression <math>u = u(x)</math> so that the integral can be written as
-
<math>u=u\left( x \right)</math>
+
-
so that the integral can be written as
+
-
 
+
{{Displayed math||<math>\int \left(\begin{matrix}
-
<math>\int{\left( \begin{matrix}
+
\text{something}\\
-
\text{something} \\
+
\text{in u}
-
\text{in}\quad u \\
+
\end{matrix}\right)\cdot {u}'\,dx\,\textrm{.}</math>}}
-
\end{matrix} \right)}\centerdot {u}'\,dx</math>.
+
As our integral is written,
As our integral is written,
 +
{{Displayed math||<math>\int\sin x\cos x\,dx</math>}}
-
<math>\int{\sin x\cos x\,dx}</math>
+
we see that the second factor <math>\cos x</math> is a derivative of the first factor, <math>\sin x</math>. If <math>u=\sin x</math>, the integral can thus be written as
-
 
+
-
 
+
-
we see that the second factor
+
-
<math>\cos x</math>
+
-
is a derivative of the first factor,
+
-
<math>\sin x</math>. If
+
-
<math>u=\text{sin }x</math>, the integral can thus be written as
+
-
 
+
-
 
+
-
<math>\int{u\centerdot {u}'\,dx}</math>
+
-
and this makes
+
{{Displayed math||<math>\int u\cdot u'\,dx</math>}}
-
<math>u=\text{sin }x</math>
+
-
an appropriate substitution,
+
 +
and this makes <math>u=\sin x</math> an appropriate substitution,
-
<math>\begin{align}
+
{{Displayed math||<math>\begin{align}
-
& \int{\sin x\cos x\,dx}=\left\{ \begin{matrix}
+
\int \sin x\cos x\,dx
-
u=\text{sin }x \\
+
&= \left\{ \begin{align}
-
du=\left( \sin x \right)^{\prime }\,dx=\cos x\,dx \\
+
u &= \sin x\\[5pt]
-
\end{matrix} \right\} \\
+
du &= (\sin x)'\,dx = \cos x\,dx
-
& =\int{u\,du=\frac{1}{2}u^{2}} \\
+
\end{align} \right\}\\[5pt]
-
& =\frac{1}{2}\sin ^{2}x+C \\
+
&= \int u\,du\\[5pt]
-
\end{align}</math>
+
&= \frac{1}{2}u^{2} + C\\[5pt]
 +
&= \frac{1}{2}\sin^2\!x + C\,\textrm{.}
 +
\end{align}</math>}}

Version vom 14:15, 28. Okt. 2008

If we are to succeed in simplifying the integral with a substitution, we must find an expression \displaystyle u = u(x) so that the integral can be written as

\displaystyle \int \left(\begin{matrix}

\text{something}\\ \text{in u} \end{matrix}\right)\cdot {u}'\,dx\,\textrm{.}

As our integral is written,

\displaystyle \int\sin x\cos x\,dx

we see that the second factor \displaystyle \cos x is a derivative of the first factor, \displaystyle \sin x. If \displaystyle u=\sin x, the integral can thus be written as

\displaystyle \int u\cdot u'\,dx

and this makes \displaystyle u=\sin x an appropriate substitution,

\displaystyle \begin{align}

\int \sin x\cos x\,dx &= \left\{ \begin{align} u &= \sin x\\[5pt] du &= (\sin x)'\,dx = \cos x\,dx \end{align} \right\}\\[5pt] &= \int u\,du\\[5pt] &= \frac{1}{2}u^{2} + C\\[5pt] &= \frac{1}{2}\sin^2\!x + C\,\textrm{.} \end{align}