Lösung 2.2:2d
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | |||
| Zeile 1: | Zeile 1: | ||
| - | What makes the integral not entirely simple is the expression  | + | What makes the integral not entirely simple is the expression <math>1-x</math> under the root sign, so we try the substitution <math>u=1-x</math>, | 
| - | <math> | + | |
| - | under the root sign, so we try the substitution | + | |
| - | <math>u= | + | |
| + | {{Displayed math||<math>\int\limits_0^1 \sqrt[3]{1-x}\,dx = \left\{ \begin{align} | ||
| + | u &= 1-x\\[5pt] | ||
| + | du &= (1-x)'\,dx = -\,dx | ||
| + | \end{align} \right\} = -\int\limits_1^0 \sqrt[3]{u}\,du\,\textrm{.}</math>}} | ||
| - | + | Note how the new limits of integration go from 1 to 0 (and not the other way around!). It is possible to change the order of the limits if we change sign at the same time, i.e. | |
| - | + | ||
| - | + | ||
| - | + | ||
| + | {{Displayed math||<math>-\int\limits_1^0 \sqrt[3]{u}\,du = +\int\limits_0^1 \sqrt[3]{u}\,du\,\textrm{.}</math>}} | ||
| - | + | All that is now left is routine calculations, | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | {{Displayed math||<math>\begin{align} | |
| - | + | \int\limits_0^1 \sqrt[3]{u}\,du | |
| - | + | &= \int\limits_0^1 u^{1/3}\,du | |
| - | + | = \biggl[\ \frac{u^{1/3+1}}{\tfrac{1}{3}+1}\ \biggr]_0^1\\[5pt]  | |
| - | + | &= \frac{3}{4}\Bigl[\ u^{4/3}\ \Bigr]_0^1 | |
| - | + | = \frac{3}{4}\bigl( 1^{4/3}-0^{4/3} \bigr) = \frac{3}{4}\,\textrm{.}  | |
| - | + | \end{align}</math>}} | |
| - | <math>\begin{align} | + | |
| - | + | ||
| - | & =\frac{3}{4}\ | + | |
| - | \end{align}</math> | + | |
Version vom 13:56, 28. Okt. 2008
What makes the integral not entirely simple is the expression \displaystyle 1-x under the root sign, so we try the substitution \displaystyle u=1-x,
| \displaystyle \int\limits_0^1 \sqrt[3]{1-x}\,dx = \left\{ \begin{align} u &= 1-x\\[5pt] du &= (1-x)'\,dx = -\,dx \end{align} \right\} = -\int\limits_1^0 \sqrt[3]{u}\,du\,\textrm{.} | 
Note how the new limits of integration go from 1 to 0 (and not the other way around!). It is possible to change the order of the limits if we change sign at the same time, i.e.
| \displaystyle -\int\limits_1^0 \sqrt[3]{u}\,du = +\int\limits_0^1 \sqrt[3]{u}\,du\,\textrm{.} | 
All that is now left is routine calculations,
| \displaystyle \begin{align} \int\limits_0^1 \sqrt[3]{u}\,du &= \int\limits_0^1 u^{1/3}\,du = \biggl[\ \frac{u^{1/3+1}}{\tfrac{1}{3}+1}\ \biggr]_0^1\\[5pt] &= \frac{3}{4}\Bigl[\ u^{4/3}\ \Bigr]_0^1 = \frac{3}{4}\bigl( 1^{4/3}-0^{4/3} \bigr) = \frac{3}{4}\,\textrm{.} \end{align} | 
 
		  