Lösung 2.2:2d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
What makes the integral not entirely simple is the expression
+
What makes the integral not entirely simple is the expression <math>1-x</math> under the root sign, so we try the substitution <math>u=1-x</math>,
-
<math>\text{1}-x</math>
+
-
under the root sign, so we try the substitution
+
-
<math>u=\text{1}-x</math>,
+
 +
{{Displayed math||<math>\int\limits_0^1 \sqrt[3]{1-x}\,dx = \left\{ \begin{align}
 +
u &= 1-x\\[5pt]
 +
du &= (1-x)'\,dx = -\,dx
 +
\end{align} \right\} = -\int\limits_1^0 \sqrt[3]{u}\,du\,\textrm{.}</math>}}
-
<math>\int\limits_{0}^{1}{\sqrt[3]{\text{1}-x}}\,dx=\left\{ \begin{matrix}
+
Note how the new limits of integration go from 1 to 0 (and not the other way around!). It is possible to change the order of the limits if we change sign at the same time, i.e.
-
u=\text{1}-x \\
+
-
du=\left( \text{1}-x \right)^{\prime }\,dx=-\,dx \\
+
-
\end{matrix} \right\}=-\int\limits_{1}^{0}{\sqrt[3]{u}}\,du</math>
+
 +
{{Displayed math||<math>-\int\limits_1^0 \sqrt[3]{u}\,du = +\int\limits_0^1 \sqrt[3]{u}\,du\,\textrm{.}</math>}}
-
Note how the new limits of integration go from
+
All that is now left is routine calculations,
-
<math>\text{1}</math>
+
-
to
+
-
<math>0</math>
+
-
(and not the other way around!). It is possible to change the order of the limits we change sign at the same time, i.e.
+
-
 
+
{{Displayed math||<math>\begin{align}
-
<math>-\int\limits_{1}^{0}{\sqrt[3]{u}}\,du=+\int\limits_{0}^{1}{\sqrt[3]{u}}\,du</math>
+
\int\limits_0^1 \sqrt[3]{u}\,du
-
 
+
&= \int\limits_0^1 u^{1/3}\,du
-
 
+
= \biggl[\ \frac{u^{1/3+1}}{\tfrac{1}{3}+1}\ \biggr]_0^1\\[5pt]
-
All that is now left is routine calculations:
+
&= \frac{3}{4}\Bigl[\ u^{4/3}\ \Bigr]_0^1
-
 
+
= \frac{3}{4}\bigl( 1^{4/3}-0^{4/3} \bigr) = \frac{3}{4}\,\textrm{.}
-
 
+
\end{align}</math>}}
-
<math>\begin{align}
+
-
& \int\limits_{0}^{1}{\sqrt[3]{u}}\,du=\int\limits_{0}^{1}{u^{\frac{1}{3}}}\,du=\left[ \frac{u^{\frac{1}{3}+1}}{\frac{1}{3}+1} \right]_{0}^{1} \\
+
-
& =\frac{3}{4}\left[ u^{\frac{4}{3}} \right]_{0}^{1}=\frac{3}{4}\left( 1^{\frac{4}{3}}-0^{\frac{4}{3}} \right)=\frac{3}{4} \\
+
-
\end{align}</math>
+

Version vom 13:56, 28. Okt. 2008

What makes the integral not entirely simple is the expression \displaystyle 1-x under the root sign, so we try the substitution \displaystyle u=1-x,

\displaystyle \int\limits_0^1 \sqrt[3]{1-x}\,dx = \left\{ \begin{align}

u &= 1-x\\[5pt] du &= (1-x)'\,dx = -\,dx \end{align} \right\} = -\int\limits_1^0 \sqrt[3]{u}\,du\,\textrm{.}

Note how the new limits of integration go from 1 to 0 (and not the other way around!). It is possible to change the order of the limits if we change sign at the same time, i.e.

\displaystyle -\int\limits_1^0 \sqrt[3]{u}\,du = +\int\limits_0^1 \sqrt[3]{u}\,du\,\textrm{.}

All that is now left is routine calculations,

\displaystyle \begin{align}

\int\limits_0^1 \sqrt[3]{u}\,du &= \int\limits_0^1 u^{1/3}\,du = \biggl[\ \frac{u^{1/3+1}}{\tfrac{1}{3}+1}\ \biggr]_0^1\\[5pt] &= \frac{3}{4}\Bigl[\ u^{4/3}\ \Bigr]_0^1 = \frac{3}{4}\bigl( 1^{4/3}-0^{4/3} \bigr) = \frac{3}{4}\,\textrm{.} \end{align}