Lösung 2.2:2d
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | What makes the integral not entirely simple is the expression | + | What makes the integral not entirely simple is the expression <math>1-x</math> under the root sign, so we try the substitution <math>u=1-x</math>, |
- | <math> | + | |
- | under the root sign, so we try the substitution | + | |
- | <math>u= | + | |
+ | {{Displayed math||<math>\int\limits_0^1 \sqrt[3]{1-x}\,dx = \left\{ \begin{align} | ||
+ | u &= 1-x\\[5pt] | ||
+ | du &= (1-x)'\,dx = -\,dx | ||
+ | \end{align} \right\} = -\int\limits_1^0 \sqrt[3]{u}\,du\,\textrm{.}</math>}} | ||
- | + | Note how the new limits of integration go from 1 to 0 (and not the other way around!). It is possible to change the order of the limits if we change sign at the same time, i.e. | |
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>-\int\limits_1^0 \sqrt[3]{u}\,du = +\int\limits_0^1 \sqrt[3]{u}\,du\,\textrm{.}</math>}} | ||
- | + | All that is now left is routine calculations, | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | {{Displayed math||<math>\begin{align} | |
- | + | \int\limits_0^1 \sqrt[3]{u}\,du | |
- | + | &= \int\limits_0^1 u^{1/3}\,du | |
- | + | = \biggl[\ \frac{u^{1/3+1}}{\tfrac{1}{3}+1}\ \biggr]_0^1\\[5pt] | |
- | + | &= \frac{3}{4}\Bigl[\ u^{4/3}\ \Bigr]_0^1 | |
- | + | = \frac{3}{4}\bigl( 1^{4/3}-0^{4/3} \bigr) = \frac{3}{4}\,\textrm{.} | |
- | + | \end{align}</math>}} | |
- | <math>\begin{align} | + | |
- | + | ||
- | & =\frac{3}{4}\ | + | |
- | \end{align}</math> | + |
Version vom 13:56, 28. Okt. 2008
What makes the integral not entirely simple is the expression \displaystyle 1-x under the root sign, so we try the substitution \displaystyle u=1-x,
\displaystyle \int\limits_0^1 \sqrt[3]{1-x}\,dx = \left\{ \begin{align}
u &= 1-x\\[5pt] du &= (1-x)'\,dx = -\,dx \end{align} \right\} = -\int\limits_1^0 \sqrt[3]{u}\,du\,\textrm{.} |
Note how the new limits of integration go from 1 to 0 (and not the other way around!). It is possible to change the order of the limits if we change sign at the same time, i.e.
\displaystyle -\int\limits_1^0 \sqrt[3]{u}\,du = +\int\limits_0^1 \sqrt[3]{u}\,du\,\textrm{.} |
All that is now left is routine calculations,
\displaystyle \begin{align}
\int\limits_0^1 \sqrt[3]{u}\,du &= \int\limits_0^1 u^{1/3}\,du = \biggl[\ \frac{u^{1/3+1}}{\tfrac{1}{3}+1}\ \biggr]_0^1\\[5pt] &= \frac{3}{4}\Bigl[\ u^{4/3}\ \Bigr]_0^1 = \frac{3}{4}\bigl( 1^{4/3}-0^{4/3} \bigr) = \frac{3}{4}\,\textrm{.} \end{align} |