Lösung 2.2:1c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | |||
| Zeile 1: | Zeile 1: | ||
| - | With the given variable substitution,  | + | With the given variable substitution, <math>u=x^3</math>, we obtain | 
| - | <math>u=x^ | + | |
| - | we obtain | + | |
| + | {{Displayed math||<math>du = \bigl(x^3\bigr)'\,dx = 3x^2\,dx</math>}} | ||
| - | + | and because the integral contains <math>x^2</math> as a factor, we can bundle it together with <math>dx</math> and replace the combination with <math>\tfrac{1}{3}\,du</math>, | |
| - | + | ||
| - | + | ||
| - | and because the integral contains  | + | |
| - | <math>x^ | + | |
| - | as a factor,  | + | |
| - | <math>dx</math> | + | |
| - | and replace the combination with  | + | |
| - | <math>\ | + | |
| - | + | ||
| - | + | ||
| - | + | ||
| + | {{Displayed math||<math>\int e^{x^3}x^2\,dx = \bigl\{\,u=x^3\,\bigr\} = \int e^u\tfrac{1}{3}\,du = \frac{1}{3}e^u + C\,\textrm{.}</math>}} | ||
| Thus, the answer is | Thus, the answer is | ||
| + | {{Displayed math||<math>\int e^{x^3}x^2\,dx = \frac{1}{3}e^{x^3} + C\,,</math>}} | ||
| - | + | where <math>C</math> is an arbitrary constant. | |
| - | + | ||
| - | + | ||
| - | where  | + | |
| - | <math>C</math> | + | |
| - | is an arbitrary constant. | + | |
Version vom 12:48, 28. Okt. 2008
With the given variable substitution, \displaystyle u=x^3, we obtain
| \displaystyle du = \bigl(x^3\bigr)'\,dx = 3x^2\,dx | 
and because the integral contains \displaystyle x^2 as a factor, we can bundle it together with \displaystyle dx and replace the combination with \displaystyle \tfrac{1}{3}\,du,
| \displaystyle \int e^{x^3}x^2\,dx = \bigl\{\,u=x^3\,\bigr\} = \int e^u\tfrac{1}{3}\,du = \frac{1}{3}e^u + C\,\textrm{.} | 
Thus, the answer is
| \displaystyle \int e^{x^3}x^2\,dx = \frac{1}{3}e^{x^3} + C\,, | 
where \displaystyle C is an arbitrary constant.
 
		  