Lösung 3.4:5

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.4:5 moved to Solution 3.4:5: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
A polynomial is said to have a triple root
-
<center> [[Image:3_4_5.gif]] </center>
+
<math>z=c</math>
-
{{NAVCONTENT_STOP}}
+
if the equation contains the factor
 +
<math>\left( z-c \right)^{3}</math>
 +
 
 +
 
 +
For our equation, this means that the left-hand side can be factorized as
 +
 
 +
 
 +
<math>z^{4}-6z^{2}+az+b=\left( z-c \right)^{3}\left( z-d \right)</math>
 +
 
 +
 
 +
according to the factor theorem, where
 +
<math>z=c</math>
 +
is the triple root and
 +
<math>z=d\text{ }</math>
 +
is the equation's fourth root (according to the fundamental theorem of algebra, a fourth-order equation always has four roots, taking into account multiplicity).
 +
 
 +
We will now try to determine
 +
<math>a</math>,
 +
<math>b</math>,
 +
<math>c</math>
 +
and
 +
<math>d</math>
 +
so that both sides in the factorization above agree.
 +
 
 +
If we expand the right-hand side above, we get
 +
 
 +
 
 +
<math>\begin{align}
 +
& \left( z-c \right)^{3}\left( z-d \right)=\left( z-c \right)^{2}\left( z-c \right)\left( z-d \right) \\
 +
& =\left( z^{2}-2cz+c^{2} \right)\left( z-c \right)\left( z-d \right) \\
 +
& =\left( z^{3}-3cz^{2}+3c^{2}z-c^{3} \right)\left( z-d \right) \\
 +
& =z^{4}-\left( 3c+d \right)z^{3}+3c\left( c+d \right)z^{2}-c^{2}\left( c-3d \right)z+c^{3}d \\
 +
\end{align}</math>
 +
 
 +
 
 +
and this means that we must have
 +
 
 +
 
 +
<math>z^{4}-6z^{2}+az+b=z^{4}-\left( 3c+d \right)z^{3}+3c\left( c+d \right)z^{2}-c^{2}\left( c-3d \right)z+c^{3}d.</math>
 +
 
 +
 
 +
Because two polynomials are equal if an only if their coefficients are equal, this gives
 +
 
 +
 
 +
<math>\left\{ \begin{array}{*{35}l}
 +
3c+d=0 \\
 +
3c\left( c+d \right)=-6 \\
 +
-c^{2}\left( c-3d \right)=a \\
 +
c^{3}d=b \\
 +
\end{array} \right.</math>
 +
 
 +
 
 +
From the first equation, we obtain
 +
<math>d=-\text{3}c\text{ }</math>
 +
and substituting this into the second equation gives us an equation for
 +
<math>c</math>,
 +
 
 +
 
 +
<math>\begin{align}
 +
& 3c\left( c-3c \right)=-6 \\
 +
& -6c^{2}=-6 \\
 +
\end{align}</math>
 +
 
 +
 
 +
i.e.
 +
<math>c=-\text{1 }</math>
 +
or
 +
<math>c=\text{1}</math>. The relation
 +
<math>d=-\text{3}c\text{ }</math>
 +
gives that the corresponding values for
 +
<math>d</math>
 +
are
 +
<math>d=3</math>
 +
and
 +
<math>d=-3</math>. The two last equations give us the corresponding values for
 +
<math>a</math>
 +
and
 +
<math>b</math>,
 +
 
 +
 
 +
<math>\begin{align}
 +
& c=1,\ d=-3:\quad a=-1^{2}\centerdot \left( 1-3\centerdot \left( -3 \right) \right)=8 \\
 +
& b=1^{3}\centerdot \left( -3 \right)=-3 \\
 +
\end{align}</math>
 +
 
 +
 
 +
 
 +
<math>\begin{align}
 +
& c=-1,\ d=3:\quad a=-\left( -1 \right)^{2}\centerdot \left( -1-3\centerdot 3 \right)=10 \\
 +
& b=\left( -1 \right)^{3}\centerdot 3=-3 \\
 +
\end{align}</math>
 +
 
 +
 
 +
Therefore, there are two different answers:
 +
 
 +
 
 +
<math>\bullet \quad a=\text{8 }</math>
 +
and
 +
<math>b=-\text{3}</math>
 +
give the triple root
 +
<math>z=\text{1}</math>
 +
and the single root
 +
<math>z=-\text{3}</math>;
 +
 
 +
<math>\bullet \quad a=10</math>
 +
and
 +
<math>b=-\text{3 }</math>give the triple root
 +
<math>z=-\text{1 }</math>
 +
and the single root
 +
<math>z=\text{3}</math>.

Version vom 11:09, 28. Okt. 2008

A polynomial is said to have a triple root \displaystyle z=c if the equation contains the factor \displaystyle \left( z-c \right)^{3}


For our equation, this means that the left-hand side can be factorized as


\displaystyle z^{4}-6z^{2}+az+b=\left( z-c \right)^{3}\left( z-d \right)


according to the factor theorem, where \displaystyle z=c is the triple root and \displaystyle z=d\text{ } is the equation's fourth root (according to the fundamental theorem of algebra, a fourth-order equation always has four roots, taking into account multiplicity).

We will now try to determine \displaystyle a, \displaystyle b, \displaystyle c and \displaystyle d so that both sides in the factorization above agree.

If we expand the right-hand side above, we get


\displaystyle \begin{align} & \left( z-c \right)^{3}\left( z-d \right)=\left( z-c \right)^{2}\left( z-c \right)\left( z-d \right) \\ & =\left( z^{2}-2cz+c^{2} \right)\left( z-c \right)\left( z-d \right) \\ & =\left( z^{3}-3cz^{2}+3c^{2}z-c^{3} \right)\left( z-d \right) \\ & =z^{4}-\left( 3c+d \right)z^{3}+3c\left( c+d \right)z^{2}-c^{2}\left( c-3d \right)z+c^{3}d \\ \end{align}


and this means that we must have


\displaystyle z^{4}-6z^{2}+az+b=z^{4}-\left( 3c+d \right)z^{3}+3c\left( c+d \right)z^{2}-c^{2}\left( c-3d \right)z+c^{3}d.


Because two polynomials are equal if an only if their coefficients are equal, this gives


\displaystyle \left\{ \begin{array}{*{35}l} 3c+d=0 \\ 3c\left( c+d \right)=-6 \\ -c^{2}\left( c-3d \right)=a \\ c^{3}d=b \\ \end{array} \right.


From the first equation, we obtain \displaystyle d=-\text{3}c\text{ } and substituting this into the second equation gives us an equation for \displaystyle c,


\displaystyle \begin{align} & 3c\left( c-3c \right)=-6 \\ & -6c^{2}=-6 \\ \end{align}


i.e. \displaystyle c=-\text{1 } or \displaystyle c=\text{1}. The relation \displaystyle d=-\text{3}c\text{ } gives that the corresponding values for \displaystyle d are \displaystyle d=3 and \displaystyle d=-3. The two last equations give us the corresponding values for \displaystyle a and \displaystyle b,


\displaystyle \begin{align} & c=1,\ d=-3:\quad a=-1^{2}\centerdot \left( 1-3\centerdot \left( -3 \right) \right)=8 \\ & b=1^{3}\centerdot \left( -3 \right)=-3 \\ \end{align}


\displaystyle \begin{align} & c=-1,\ d=3:\quad a=-\left( -1 \right)^{2}\centerdot \left( -1-3\centerdot 3 \right)=10 \\ & b=\left( -1 \right)^{3}\centerdot 3=-3 \\ \end{align}


Therefore, there are two different answers:


\displaystyle \bullet \quad a=\text{8 } and \displaystyle b=-\text{3} give the triple root \displaystyle z=\text{1} and the single root \displaystyle z=-\text{3};

\displaystyle \bullet \quad a=10 and \displaystyle b=-\text{3 }give the triple root \displaystyle z=-\text{1 } and the single root \displaystyle z=\text{3}.