Lösung 3.4:1c
Aus Online Mathematik Brückenkurs 2
K (Lösning 3.4:1c moved to Solution 3.4:1c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | If we focus on the leading term |
- | < | + | <math>x^{3}</math>, we need to complement it with in order to get an expression that is divisible by the denominator , |
- | {{ | + | |
+ | |||
+ | <math>\frac{x^{3}+a^{3}}{x+a}=\frac{x^{3}+ax^{2}-ax^{2}+a^{3}}{x+a}</math> | ||
+ | |||
+ | |||
+ | With this form on the right-hand side, we can separate away the first two terms in the numerator and have left a polynomial quotient with | ||
+ | <math>-ax^{2}+a^{3}</math> | ||
+ | in the numerator: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{x^{3}+ax^{2}-ax^{2}+a^{3}}{x+a}=\frac{x^{3}+ax^{2}}{x+a}+\frac{-ax^{2}+a^{3}}{x+a} \\ | ||
+ | & =\frac{x^{2}\left( x+a \right)}{x+a}+\frac{-ax^{2}+a^{3}}{x+a} \\ | ||
+ | & =x^{2}+\frac{-ax^{2}+a^{3}}{x+a} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | When we treat the new quotient, we add and take away | ||
+ | <math>-a^{2}x</math> | ||
+ | to/from | ||
+ | <math>-ax^{2}</math> | ||
+ | in order to get something divisible by | ||
+ | <math>x+a</math> | ||
+ | |||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & x^{2}+\frac{-ax^{2}+a^{3}}{x+a}=x^{2}+\frac{-ax^{2}-a^{2}x+a^{2}x+a^{3}}{x+a} \\ | ||
+ | & =x^{2}+\frac{-ax^{2}-a^{2}x}{x+a}+\frac{a^{2}x+a^{3}}{x+a} \\ | ||
+ | & =x^{2}+\frac{-ax\left( x+a \right)}{x+a}+\frac{a^{2}x+a^{3}}{x+a} \\ | ||
+ | & =x^{2}-ax+\frac{a^{2}x+a^{3}}{x+a} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | In the last quotient, the numerator has | ||
+ | <math>x+a</math> | ||
+ | as a factor, and we obtain a perfect division: | ||
+ | |||
+ | |||
+ | <math>x^{2}-ax+\frac{a^{2}x+a^{3}}{x+a}=x^{2}-ax+\frac{a^{2}\left( x+a \right)}{x+a}=x^{2}-ax+a^{2}</math> | ||
+ | |||
+ | |||
+ | If we have calculated correctly, we should have | ||
+ | |||
+ | |||
+ | <math>\frac{x^{3}+a^{3}}{x+a}=x^{2}-ax+a^{2}</math> | ||
+ | |||
+ | |||
+ | and one way to check the answer is to multiply both sides by | ||
+ | <math>x+a</math>, | ||
+ | |||
+ | |||
+ | <math>x^{3}+a^{3}=\left( x^{2}-ax+a^{2} \right)\left( x+a \right)</math> | ||
+ | |||
+ | |||
+ | Then, expand the right-hand side and then we should get what is on the left-hand side: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \text{RHS}=\left( x^{2}-ax+a^{2} \right)\left( x+a \right)=x^{3}+ax^{2}-ax^{2}-a^{2}x+a^{2}x+a^{3} \\ | ||
+ | & =x^{3}+a^{3}=~~\text{LHS} \\ | ||
+ | \end{align}</math> |
Version vom 13:04, 26. Okt. 2008
If we focus on the leading term \displaystyle x^{3}, we need to complement it with in order to get an expression that is divisible by the denominator ,
\displaystyle \frac{x^{3}+a^{3}}{x+a}=\frac{x^{3}+ax^{2}-ax^{2}+a^{3}}{x+a}
With this form on the right-hand side, we can separate away the first two terms in the numerator and have left a polynomial quotient with
\displaystyle -ax^{2}+a^{3}
in the numerator:
\displaystyle \begin{align}
& \frac{x^{3}+ax^{2}-ax^{2}+a^{3}}{x+a}=\frac{x^{3}+ax^{2}}{x+a}+\frac{-ax^{2}+a^{3}}{x+a} \\
& =\frac{x^{2}\left( x+a \right)}{x+a}+\frac{-ax^{2}+a^{3}}{x+a} \\
& =x^{2}+\frac{-ax^{2}+a^{3}}{x+a} \\
\end{align}
When we treat the new quotient, we add and take away
\displaystyle -a^{2}x
to/from
\displaystyle -ax^{2}
in order to get something divisible by
\displaystyle x+a
\displaystyle \begin{align} & x^{2}+\frac{-ax^{2}+a^{3}}{x+a}=x^{2}+\frac{-ax^{2}-a^{2}x+a^{2}x+a^{3}}{x+a} \\ & =x^{2}+\frac{-ax^{2}-a^{2}x}{x+a}+\frac{a^{2}x+a^{3}}{x+a} \\ & =x^{2}+\frac{-ax\left( x+a \right)}{x+a}+\frac{a^{2}x+a^{3}}{x+a} \\ & =x^{2}-ax+\frac{a^{2}x+a^{3}}{x+a} \\ \end{align}
In the last quotient, the numerator has
\displaystyle x+a
as a factor, and we obtain a perfect division:
\displaystyle x^{2}-ax+\frac{a^{2}x+a^{3}}{x+a}=x^{2}-ax+\frac{a^{2}\left( x+a \right)}{x+a}=x^{2}-ax+a^{2}
If we have calculated correctly, we should have
\displaystyle \frac{x^{3}+a^{3}}{x+a}=x^{2}-ax+a^{2}
and one way to check the answer is to multiply both sides by
\displaystyle x+a,
\displaystyle x^{3}+a^{3}=\left( x^{2}-ax+a^{2} \right)\left( x+a \right)
Then, expand the right-hand side and then we should get what is on the left-hand side:
\displaystyle \begin{align}
& \text{RHS}=\left( x^{2}-ax+a^{2} \right)\left( x+a \right)=x^{3}+ax^{2}-ax^{2}-a^{2}x+a^{2}x+a^{3} \\
& =x^{3}+a^{3}=~~\text{LHS} \\
\end{align}