Lösung 3.3:1b
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 3.3:1b moved to Solution 3.3:1b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | First, we write the number |
- | + | <math>\frac{1}{2}+i\frac{\sqrt{3}}{2}</math> | |
- | + | in polar form. | |
+ | |||
[[Image:3_3_1_b.gif]] [[Image:3_3_1_b_text.gif]] | [[Image:3_3_1_b.gif]] [[Image:3_3_1_b_text.gif]] | ||
+ | |||
+ | Thus, | ||
+ | |||
+ | |||
+ | <math>\frac{1}{2}+i\frac{\sqrt{3}}{2}=1\centerdot \left( \cos \frac{\pi }{3}+i\sin \frac{\pi }{3} \right)</math> | ||
+ | |||
+ | |||
+ | and de Moivre's formula gives | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \left( \frac{1}{2}+i\frac{\sqrt{3}}{2} \right)^{12}=1^{12}\centerdot \left( \cos 12\centerdot \frac{\pi }{3}+i\sin 12\centerdot \frac{\pi }{3} \right) \\ | ||
+ | & =1\centerdot \left( \cos 4\pi +i\sin 4\pi \right) \\ | ||
+ | & =1\centerdot \left( 1+i\centerdot 0 \right)=1 \\ | ||
+ | \end{align}</math> |
Version vom 07:14, 24. Okt. 2008
First, we write the number \displaystyle \frac{1}{2}+i\frac{\sqrt{3}}{2} in polar form.
Thus,
\displaystyle \frac{1}{2}+i\frac{\sqrt{3}}{2}=1\centerdot \left( \cos \frac{\pi }{3}+i\sin \frac{\pi }{3} \right)
and de Moivre's formula gives
\displaystyle \begin{align}
& \left( \frac{1}{2}+i\frac{\sqrt{3}}{2} \right)^{12}=1^{12}\centerdot \left( \cos 12\centerdot \frac{\pi }{3}+i\sin 12\centerdot \frac{\pi }{3} \right) \\
& =1\centerdot \left( \cos 4\pi +i\sin 4\pi \right) \\
& =1\centerdot \left( 1+i\centerdot 0 \right)=1 \\
\end{align}