Lösung 2.2:3b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.2:3b moved to Solution 2.2:3b: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
If we to succeed in simplifying the integral with a substitution, we must find an expression
-
<center> [[Image:2_2_3b.gif]] </center>
+
<math>u=u\left( x \right)</math>
-
{{NAVCONTENT_STOP}}
+
so that the integral can be written as
 +
 
 +
 
 +
<math>\int{\left( \begin{matrix}
 +
\text{something} \\
 +
\text{in}\quad u \\
 +
\end{matrix} \right)}\centerdot {u}'\,dx</math>.
 +
 
 +
As our integral is written,
 +
 
 +
 
 +
<math>\int{\sin x\cos x\,dx}</math>
 +
 
 +
 
 +
we see that the second factor
 +
<math>\cos x</math>
 +
is a derivative of the first factor,
 +
<math>\sin x</math>. If
 +
<math>u=\text{sin }x</math>, the integral can thus be written as
 +
 
 +
 
 +
<math>\int{u\centerdot {u}'\,dx}</math>
 +
 
 +
and this makes
 +
<math>u=\text{sin }x</math>
 +
an appropriate substitution,
 +
 
 +
 
 +
<math>\begin{align}
 +
& \int{\sin x\cos x\,dx}=\left\{ \begin{matrix}
 +
u=\text{sin }x \\
 +
du=\left( \sin x \right)^{\prime }\,dx=\cos x\,dx \\
 +
\end{matrix} \right\} \\
 +
& =\int{u\,du=\frac{1}{2}u^{2}} \\
 +
& =\frac{1}{2}\sin ^{2}x+C \\
 +
\end{align}</math>

Version vom 10:28, 21. Okt. 2008

If we to succeed in simplifying the integral with a substitution, we must find an expression \displaystyle u=u\left( x \right) so that the integral can be written as


\displaystyle \int{\left( \begin{matrix} \text{something} \\ \text{in}\quad u \\ \end{matrix} \right)}\centerdot {u}'\,dx.

As our integral is written,


\displaystyle \int{\sin x\cos x\,dx}


we see that the second factor \displaystyle \cos x is a derivative of the first factor, \displaystyle \sin x. If \displaystyle u=\text{sin }x, the integral can thus be written as


\displaystyle \int{u\centerdot {u}'\,dx}

and this makes \displaystyle u=\text{sin }x an appropriate substitution,


\displaystyle \begin{align} & \int{\sin x\cos x\,dx}=\left\{ \begin{matrix} u=\text{sin }x \\ du=\left( \sin x \right)^{\prime }\,dx=\cos x\,dx \\ \end{matrix} \right\} \\ & =\int{u\,du=\frac{1}{2}u^{2}} \\ & =\frac{1}{2}\sin ^{2}x+C \\ \end{align}