Lösung 2.2:3b
Aus Online Mathematik Brückenkurs 2
K (Lösning 2.2:3b moved to Solution 2.2:3b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | If we to succeed in simplifying the integral with a substitution, we must find an expression |
- | < | + | <math>u=u\left( x \right)</math> |
- | {{ | + | so that the integral can be written as |
+ | |||
+ | |||
+ | <math>\int{\left( \begin{matrix} | ||
+ | \text{something} \\ | ||
+ | \text{in}\quad u \\ | ||
+ | \end{matrix} \right)}\centerdot {u}'\,dx</math>. | ||
+ | |||
+ | As our integral is written, | ||
+ | |||
+ | |||
+ | <math>\int{\sin x\cos x\,dx}</math> | ||
+ | |||
+ | |||
+ | we see that the second factor | ||
+ | <math>\cos x</math> | ||
+ | is a derivative of the first factor, | ||
+ | <math>\sin x</math>. If | ||
+ | <math>u=\text{sin }x</math>, the integral can thus be written as | ||
+ | |||
+ | |||
+ | <math>\int{u\centerdot {u}'\,dx}</math> | ||
+ | |||
+ | and this makes | ||
+ | <math>u=\text{sin }x</math> | ||
+ | an appropriate substitution, | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \int{\sin x\cos x\,dx}=\left\{ \begin{matrix} | ||
+ | u=\text{sin }x \\ | ||
+ | du=\left( \sin x \right)^{\prime }\,dx=\cos x\,dx \\ | ||
+ | \end{matrix} \right\} \\ | ||
+ | & =\int{u\,du=\frac{1}{2}u^{2}} \\ | ||
+ | & =\frac{1}{2}\sin ^{2}x+C \\ | ||
+ | \end{align}</math> |
Version vom 10:28, 21. Okt. 2008
If we to succeed in simplifying the integral with a substitution, we must find an expression \displaystyle u=u\left( x \right) so that the integral can be written as
\displaystyle \int{\left( \begin{matrix}
\text{something} \\
\text{in}\quad u \\
\end{matrix} \right)}\centerdot {u}'\,dx.
As our integral is written,
\displaystyle \int{\sin x\cos x\,dx}
we see that the second factor
\displaystyle \cos x
is a derivative of the first factor,
\displaystyle \sin x. If
\displaystyle u=\text{sin }x, the integral can thus be written as
\displaystyle \int{u\centerdot {u}'\,dx}
and this makes \displaystyle u=\text{sin }x an appropriate substitution,
\displaystyle \begin{align}
& \int{\sin x\cos x\,dx}=\left\{ \begin{matrix}
u=\text{sin }x \\
du=\left( \sin x \right)^{\prime }\,dx=\cos x\,dx \\
\end{matrix} \right\} \\
& =\int{u\,du=\frac{1}{2}u^{2}} \\
& =\frac{1}{2}\sin ^{2}x+C \\
\end{align}