Lösung 2.2:2d
Aus Online Mathematik Brückenkurs 2
K (Lösning 2.2:2d moved to Solution 2.2:2d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | What makes the integral not entirely simple is the expression |
- | < | + | <math>\text{1}-x</math> |
- | {{ | + | under the root sign, so we try the substitution |
+ | <math>u=\text{1}-x</math>, | ||
+ | |||
+ | |||
+ | <math>\int\limits_{0}^{1}{\sqrt[3]{\text{1}-x}}\,dx=\left\{ \begin{matrix} | ||
+ | u=\text{1}-x \\ | ||
+ | du=\left( \text{1}-x \right)^{\prime }\,dx=-\,dx \\ | ||
+ | \end{matrix} \right\}=-\int\limits_{1}^{0}{\sqrt[3]{u}}\,du</math> | ||
+ | |||
+ | |||
+ | Note how the new limits of integration go from | ||
+ | <math>\text{1}</math> | ||
+ | to | ||
+ | <math>0</math> | ||
+ | (and not the other way around!). It is possible to change the order of the limits we change sign at the same time, i.e. | ||
+ | |||
+ | |||
+ | <math>-\int\limits_{1}^{0}{\sqrt[3]{u}}\,du=+\int\limits_{0}^{1}{\sqrt[3]{u}}\,du</math> | ||
+ | |||
+ | |||
+ | All that is now left is routine calculations: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \int\limits_{0}^{1}{\sqrt[3]{u}}\,du=\int\limits_{0}^{1}{u^{\frac{1}{3}}}\,du=\left[ \frac{u^{\frac{1}{3}+1}}{\frac{1}{3}+1} \right]_{0}^{1} \\ | ||
+ | & =\frac{3}{4}\left[ u^{\frac{4}{3}} \right]_{0}^{1}=\frac{3}{4}\left( 1^{\frac{4}{3}}-0^{\frac{4}{3}} \right)=\frac{3}{4} \\ | ||
+ | \end{align}</math> |
Version vom 12:34, 20. Okt. 2008
What makes the integral not entirely simple is the expression \displaystyle \text{1}-x under the root sign, so we try the substitution \displaystyle u=\text{1}-x,
\displaystyle \int\limits_{0}^{1}{\sqrt[3]{\text{1}-x}}\,dx=\left\{ \begin{matrix}
u=\text{1}-x \\
du=\left( \text{1}-x \right)^{\prime }\,dx=-\,dx \\
\end{matrix} \right\}=-\int\limits_{1}^{0}{\sqrt[3]{u}}\,du
Note how the new limits of integration go from
\displaystyle \text{1}
to
\displaystyle 0
(and not the other way around!). It is possible to change the order of the limits we change sign at the same time, i.e.
\displaystyle -\int\limits_{1}^{0}{\sqrt[3]{u}}\,du=+\int\limits_{0}^{1}{\sqrt[3]{u}}\,du
All that is now left is routine calculations:
\displaystyle \begin{align}
& \int\limits_{0}^{1}{\sqrt[3]{u}}\,du=\int\limits_{0}^{1}{u^{\frac{1}{3}}}\,du=\left[ \frac{u^{\frac{1}{3}+1}}{\frac{1}{3}+1} \right]_{0}^{1} \\
& =\frac{3}{4}\left[ u^{\frac{4}{3}} \right]_{0}^{1}=\frac{3}{4}\left( 1^{\frac{4}{3}}-0^{\frac{4}{3}} \right)=\frac{3}{4} \\
\end{align}