Lösung 2.2:1a
Aus Online Mathematik Brückenkurs 2
K (Lösning 2.2:1a moved to Solution 2.2:1a: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | A substitution of variables is often carried out so as to transform a complicated integral to one that is less complicated which one can either directly calculate or continue to work with. |
- | < | + | |
- | {{ | + | When we carry out a substitution of variables |
- | {{ | + | <math>u=u\left( x \right)</math>, there are three things which are affected in the integral: |
- | < | + | |
- | {{ | + | 1. the integral must be rewritten in terms of the new variable |
- | {{ | + | <math>u</math>; |
- | < | + | 2. the element of integration, |
- | {{ | + | <math>dx</math>, is replaced by |
+ | <math>du</math>, according to the formula | ||
+ | <math>du={u}'\left( x \right)dx</math>; | ||
+ | 3. the limits of integration are for | ||
+ | <math>x\text{ }</math> | ||
+ | and must be changed to limits of integration for the variable | ||
+ | <math>u</math>. | ||
+ | |||
+ | In this case, we will perform the change of variables | ||
+ | <math>u=3x-1</math>, mainly because the integrand | ||
+ | <math>\frac{1}{\left( 3x-1 \right)^{4}}</math> | ||
+ | will then be replaced by | ||
+ | <math>\frac{1}{u^{4}}</math>. | ||
+ | |||
+ | The relation between | ||
+ | <math>dx</math> | ||
+ | and | ||
+ | <math>du</math> | ||
+ | reads | ||
+ | |||
+ | |||
+ | <math>du={u}'\left( x \right)\,dx=\left( 3x-1 \right)^{\prime }\,dx=3\,dx</math>, | ||
+ | |||
+ | which means that | ||
+ | <math>dx</math> | ||
+ | is replaced by | ||
+ | <math>\frac{1}{3}\,du</math>. | ||
+ | |||
+ | Furthermore, when | ||
+ | <math>x=\text{1}</math> | ||
+ | in the lower limit of integration, the corresponding | ||
+ | <math>u</math> | ||
+ | -value becomes | ||
+ | <math>u=3\centerdot 1-1=2</math>, and when | ||
+ | <math>x=2</math>, we obtain the u-value | ||
+ | <math>u=3\centerdot 2-1=5</math> | ||
+ | |||
+ | |||
+ | One usually writes the whole substitution of variables as | ||
+ | |||
+ | |||
+ | <math>\int\limits_{1}^{2}{\frac{\,dx}{\left( 3x-1 \right)^{4}}}=\left\{ \begin{matrix} | ||
+ | u=3x-1 \\ | ||
+ | du=3\,dx \\ | ||
+ | \end{matrix} \right\}=\int\limits_{2}^{5}{\frac{\frac{1}{3}\,du}{u^{4}}}</math> | ||
+ | |||
+ | |||
+ | Sometimes, we are more brief and hide the details: | ||
+ | |||
+ | |||
+ | <math>\int\limits_{1}^{2}{\frac{\,dx}{\left( 3x-1 \right)^{4}}}=\left\{ u=3x-1 \right\}=\int\limits_{2}^{5}{\frac{\frac{1}{3}\,du}{u^{4}}}</math> | ||
+ | |||
+ | |||
+ | After the substitution of variables, we have a standard integral which is easy to compute. | ||
+ | |||
+ | In summary, the whole calculation is: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \int\limits_{1}^{2}{\frac{\,dx}{\left( 3x-1 \right)^{4}}}=\left\{ \begin{matrix} | ||
+ | u=3x-1 \\ | ||
+ | du=3\,dx \\ | ||
+ | \end{matrix} \right\}=\int\limits_{2}^{5}{\frac{\frac{1}{3}\,du}{u^{4}}} \\ | ||
+ | & =\frac{1}{3}\int\limits_{2}^{5}{\,u^{-4}du}=\left[ \frac{u^{-4+1}}{-4+1} \right]_{2}^{5} \\ | ||
+ | & =-\frac{1}{9}\left[ \frac{1}{u^{3}} \right]_{2}^{5}=-\frac{1}{9}\left( \frac{1}{5^{3}}-\frac{1}{2^{3}} \right) \\ | ||
+ | & =-\frac{1}{9}\centerdot \frac{2^{3}-5^{3}}{2^{3}\centerdot 5^{3}}=\frac{117}{3^{2}\centerdot 2^{3}\centerdot 5^{3}} \\ | ||
+ | & =\frac{3^{2}\centerdot 13}{3^{2}\centerdot 2^{3}\centerdot 5^{3}}=\frac{13}{2^{3}\centerdot 5^{3}}=\frac{13}{1000} \\ | ||
+ | \end{align}</math>. |
Version vom 09:21, 19. Okt. 2008
A substitution of variables is often carried out so as to transform a complicated integral to one that is less complicated which one can either directly calculate or continue to work with.
When we carry out a substitution of variables \displaystyle u=u\left( x \right), there are three things which are affected in the integral:
1. the integral must be rewritten in terms of the new variable \displaystyle u; 2. the element of integration, \displaystyle dx, is replaced by \displaystyle du, according to the formula \displaystyle du={u}'\left( x \right)dx; 3. the limits of integration are for \displaystyle x\text{ } and must be changed to limits of integration for the variable \displaystyle u.
In this case, we will perform the change of variables \displaystyle u=3x-1, mainly because the integrand \displaystyle \frac{1}{\left( 3x-1 \right)^{4}} will then be replaced by \displaystyle \frac{1}{u^{4}}.
The relation between \displaystyle dx and \displaystyle du reads
\displaystyle du={u}'\left( x \right)\,dx=\left( 3x-1 \right)^{\prime }\,dx=3\,dx,
which means that \displaystyle dx is replaced by \displaystyle \frac{1}{3}\,du.
Furthermore, when \displaystyle x=\text{1} in the lower limit of integration, the corresponding \displaystyle u -value becomes \displaystyle u=3\centerdot 1-1=2, and when \displaystyle x=2, we obtain the u-value \displaystyle u=3\centerdot 2-1=5
One usually writes the whole substitution of variables as
\displaystyle \int\limits_{1}^{2}{\frac{\,dx}{\left( 3x-1 \right)^{4}}}=\left\{ \begin{matrix}
u=3x-1 \\
du=3\,dx \\
\end{matrix} \right\}=\int\limits_{2}^{5}{\frac{\frac{1}{3}\,du}{u^{4}}}
Sometimes, we are more brief and hide the details:
\displaystyle \int\limits_{1}^{2}{\frac{\,dx}{\left( 3x-1 \right)^{4}}}=\left\{ u=3x-1 \right\}=\int\limits_{2}^{5}{\frac{\frac{1}{3}\,du}{u^{4}}}
After the substitution of variables, we have a standard integral which is easy to compute.
In summary, the whole calculation is:
\displaystyle \begin{align}
& \int\limits_{1}^{2}{\frac{\,dx}{\left( 3x-1 \right)^{4}}}=\left\{ \begin{matrix}
u=3x-1 \\
du=3\,dx \\
\end{matrix} \right\}=\int\limits_{2}^{5}{\frac{\frac{1}{3}\,du}{u^{4}}} \\
& =\frac{1}{3}\int\limits_{2}^{5}{\,u^{-4}du}=\left[ \frac{u^{-4+1}}{-4+1} \right]_{2}^{5} \\
& =-\frac{1}{9}\left[ \frac{1}{u^{3}} \right]_{2}^{5}=-\frac{1}{9}\left( \frac{1}{5^{3}}-\frac{1}{2^{3}} \right) \\
& =-\frac{1}{9}\centerdot \frac{2^{3}-5^{3}}{2^{3}\centerdot 5^{3}}=\frac{117}{3^{2}\centerdot 2^{3}\centerdot 5^{3}} \\
& =\frac{3^{2}\centerdot 13}{3^{2}\centerdot 2^{3}\centerdot 5^{3}}=\frac{13}{2^{3}\centerdot 5^{3}}=\frac{13}{1000} \\
\end{align}.