Lösung 1.2:3d
Aus Online Mathematik Brückenkurs 2
K (Lösning 1.2:3d moved to Solution 1.2:3d: Robot: moved page) |
|||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | We differentiate the function successively, one part at a time, |
| - | < | + | |
| - | {{ | + | |
| + | <math>\frac{d}{dx}\sin \left\{ \left. \cos \sin x \right\} \right.=\cos \left\{ \left. \cos \sin x \right\} \right.\centerdot \left( \left\{ \left. \cos \sin x \right\} \right. \right)^{\prime }</math>, | ||
| + | |||
| + | and the next differentiation becomes | ||
| + | |||
| + | |||
| + | <math>\begin{align} | ||
| + | & \frac{d}{dx}\cos \left\{ \left. \sin x \right\} \right.=-\sin \left\{ \left. \sin x \right\} \right.\centerdot \left( \sin x \right)^{\prime } \\ | ||
| + | & =-\sin \sin x\centerdot \cos x \\ | ||
| + | \end{align}</math> | ||
| + | |||
| + | |||
| + | The answer is thus | ||
| + | |||
| + | |||
| + | <math>\begin{align} | ||
| + | & \frac{d}{dx}\sin \cos \sin x=\cos \cos \sin x\centerdot \left( -\sin \sin x\centerdot \cos x \right) \\ | ||
| + | & =-\cos \cos \sin x\centerdot \sin \sin x\centerdot \cos x \\ | ||
| + | \end{align}</math> | ||
Version vom 13:18, 12. Okt. 2008
We differentiate the function successively, one part at a time,
\displaystyle \frac{d}{dx}\sin \left\{ \left. \cos \sin x \right\} \right.=\cos \left\{ \left. \cos \sin x \right\} \right.\centerdot \left( \left\{ \left. \cos \sin x \right\} \right. \right)^{\prime },
and the next differentiation becomes
\displaystyle \begin{align}
& \frac{d}{dx}\cos \left\{ \left. \sin x \right\} \right.=-\sin \left\{ \left. \sin x \right\} \right.\centerdot \left( \sin x \right)^{\prime } \\
& =-\sin \sin x\centerdot \cos x \\
\end{align}
The answer is thus
\displaystyle \begin{align}
& \frac{d}{dx}\sin \cos \sin x=\cos \cos \sin x\centerdot \left( -\sin \sin x\centerdot \cos x \right) \\
& =-\cos \cos \sin x\centerdot \sin \sin x\centerdot \cos x \\
\end{align}
