Lösung 1.2:3d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.2:3d moved to Solution 1.2:3d: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
We differentiate the function successively, one part at a time,
-
<center> [[Image:1_2_3d.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\frac{d}{dx}\sin \left\{ \left. \cos \sin x \right\} \right.=\cos \left\{ \left. \cos \sin x \right\} \right.\centerdot \left( \left\{ \left. \cos \sin x \right\} \right. \right)^{\prime }</math>,
 +
 
 +
and the next differentiation becomes
 +
 
 +
 
 +
<math>\begin{align}
 +
& \frac{d}{dx}\cos \left\{ \left. \sin x \right\} \right.=-\sin \left\{ \left. \sin x \right\} \right.\centerdot \left( \sin x \right)^{\prime } \\
 +
& =-\sin \sin x\centerdot \cos x \\
 +
\end{align}</math>
 +
 
 +
 
 +
The answer is thus
 +
 
 +
 
 +
<math>\begin{align}
 +
& \frac{d}{dx}\sin \cos \sin x=\cos \cos \sin x\centerdot \left( -\sin \sin x\centerdot \cos x \right) \\
 +
& =-\cos \cos \sin x\centerdot \sin \sin x\centerdot \cos x \\
 +
\end{align}</math>

Version vom 13:18, 12. Okt. 2008

We differentiate the function successively, one part at a time,


\displaystyle \frac{d}{dx}\sin \left\{ \left. \cos \sin x \right\} \right.=\cos \left\{ \left. \cos \sin x \right\} \right.\centerdot \left( \left\{ \left. \cos \sin x \right\} \right. \right)^{\prime },

and the next differentiation becomes


\displaystyle \begin{align} & \frac{d}{dx}\cos \left\{ \left. \sin x \right\} \right.=-\sin \left\{ \left. \sin x \right\} \right.\centerdot \left( \sin x \right)^{\prime } \\ & =-\sin \sin x\centerdot \cos x \\ \end{align}


The answer is thus


\displaystyle \begin{align} & \frac{d}{dx}\sin \cos \sin x=\cos \cos \sin x\centerdot \left( -\sin \sin x\centerdot \cos x \right) \\ & =-\cos \cos \sin x\centerdot \sin \sin x\centerdot \cos x \\ \end{align}