Lösung 1.2:2a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.2:2a moved to Solution 1.2:2a: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
The expression is composed of two parts: first, an outer part,
-
<center> [[Image:1_2_2a.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\sin \left\{ \left. {} \right\} \right.</math>
 +
 
 +
 
 +
and then an inner part,
 +
<math>\left\{ \left. {} \right\} \right.=x^{2}</math>.
 +
 +
When we differentiate compound expressions, we first differentiate the outer part,
 +
<math>\sin \left\{ \left. {} \right\} \right.</math>, as if
 +
<math>\left\{ \left. {} \right\} \right.</math>
 +
were the variable that we differentiate with respect to, and then we multiply with the derivative of the inner part
 +
<math>\left\{ \left. {} \right\} \right.^{\prime }</math>, so that
 +
 
 +
 
 +
<math>\frac{d}{dx}\sin \left\{ \left. x^{2} \right\} \right.=\cos \left\{ \left. x^{2} \right\} \right.\centerdot \left( \left\{ \left. x^{2} \right\} \right. \right)^{\prime }=\cos x^{2}\centerdot 2x</math>

Version vom 12:46, 11. Okt. 2008

The expression is composed of two parts: first, an outer part,


\displaystyle \sin \left\{ \left. {} \right\} \right.


and then an inner part, \displaystyle \left\{ \left. {} \right\} \right.=x^{2}.

When we differentiate compound expressions, we first differentiate the outer part, \displaystyle \sin \left\{ \left. {} \right\} \right., as if \displaystyle \left\{ \left. {} \right\} \right. were the variable that we differentiate with respect to, and then we multiply with the derivative of the inner part \displaystyle \left\{ \left. {} \right\} \right.^{\prime }, so that


\displaystyle \frac{d}{dx}\sin \left\{ \left. x^{2} \right\} \right.=\cos \left\{ \left. x^{2} \right\} \right.\centerdot \left( \left\{ \left. x^{2} \right\} \right. \right)^{\prime }=\cos x^{2}\centerdot 2x