Lösung 1.1:5

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.1:5 moved to Solution 1.1:5: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Suppose that the tangent touches the curve at the point
-
<center> [[Image:1_1_5-1(3).gif]] </center>
+
<math>\left( x_{0} \right.,\left. y_{0} \right)</math>. That point must, first and foremost, lie on the curve and therefore satisfy the equation of the curve, i.e.
-
<center> [[Image:1_1_5-2(3).gif]] </center>
+
 
-
<center> [[Image:1_1_5-3(3).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
<math>y_{0}=-x_{0}^{2}\quad \quad \quad \left( 1 \right)</math>
 +
 
 +
 
 +
If we now write the equation of the tangent as
 +
<math>y=kx+m</math>, the gradient of the tangent,
 +
<math>k</math>, is given by the value of the curve's derivative,
 +
<math>{y}'=-2x</math>, at
 +
<math>x=x_{0}</math>,
 +
 
 +
 
 +
<math>k=-2x_{0}\quad \quad \quad \left( 2 \right)</math>
 +
 
 +
The condition that the tangent goes through the point
 +
<math>\left( x_{0} \right.,\left. y_{0} \right)</math>
 +
gives us that
 +
 
 +
 
 +
<math>y_{0}=k\centerdot x_{0}+m\quad \quad \quad \left( 3 \right)</math>
 +
 
 +
 
 +
In addition to this, the tangent should also pass through the point
 +
<math>\left( 1 \right.,\left. 1 \right)</math>,
 +
 
 +
 
 +
<math>1=k\centerdot 1+m\quad \quad \quad \left( 4 \right)</math>
 +
 
 +
 
 +
Equations (1)-(4) constitute an equation system in the unknowns
 +
<math>x_{0},\ y_{0},\ k</math>
 +
and
 +
<math>m</math>.
 +
 
 +
Because we are looking for
 +
<math>x_{0}\text{ }</math>
 +
and
 +
<math>y_{0}</math>, the first step is to try and eliminate
 +
<math>k</math>
 +
and
 +
<math>m</math>
 +
from the equations.
 +
 
 +
Equation (2) gives that
 +
<math>k=-\text{2 }x_{0}</math>
 +
and substituting this into equation (4) gives
 +
 
 +
 
 +
<math>1=-2x_{0}+m\quad \Leftrightarrow \quad m=2x_{0}+1</math>
 +
 
 +
With
 +
<math>k</math>
 +
and
 +
<math>m</math>
 +
expressed in terms of
 +
<math>x_{0}</math>
 +
and
 +
<math>y_{0}</math>, (3) becomes an equation that is expressed completely in terms of
 +
<math>x_{0}</math>
 +
and
 +
<math>y_{0}</math>,
 +
 
 +
 
 +
<math>y_{0}=-2x_{0}^{2}+2x_{0}+1\quad \quad \quad \left( 3' \right)</math>
 +
 
 +
 
 +
This equation, together with (1), is an equation system in
 +
<math>x_{0}</math>
 +
and
 +
<math>y_{0}</math>
 +
 
 +
 
 +
 
 +
<math>\left\{ \begin{array}{*{35}l}
 +
y_{0}=-x_{0}^{2} \\
 +
y_{0}=-2x_{0}^{2}+2x_{0}+1 \\
 +
\end{array} \right.</math>
 +
 
 +
 
 +
Substituting equation (1) into (3') gives us an equation in x0,
 +
 
 +
 
 +
<math>-x_{0}^{2}=-2x_{0}^{2}+2x_{0}+1</math>
 +
 
 +
i.e.
 +
 
 +
 
 +
<math>x_{0}^{2}-2x_{0}-1=0</math>
 +
 
 +
 
 +
This second-degree equation has solutions
 +
 
 +
 
 +
<math>x_{0}=1-\sqrt{2}</math>
 +
and
 +
<math>x_{0}=1+\sqrt{2}</math>
 +
 
 +
 
 +
Equation (1) gives the corresponding y-values:
 +
 
 +
 +
<math>y_{0}=-3+2\sqrt{2}</math>
 +
and
 +
<math>y_{0}=-3-2\sqrt{2}</math>
 +
 
 +
 
 +
Thus, the answers are the points
 +
<math>\left( 1-\sqrt{2} \right.,\left. -3+2\sqrt{2} \right)</math>
 +
and
 +
<math>\left( 1+\sqrt{2} \right.,\left. -3-2\sqrt{2} \right)</math>.
 +
 
[[Image:1_1_5_3.gif|center]]
[[Image:1_1_5_3.gif|center]]

Version vom 13:04, 10. Okt. 2008

Suppose that the tangent touches the curve at the point \displaystyle \left( x_{0} \right.,\left. y_{0} \right). That point must, first and foremost, lie on the curve and therefore satisfy the equation of the curve, i.e.


\displaystyle y_{0}=-x_{0}^{2}\quad \quad \quad \left( 1 \right)


If we now write the equation of the tangent as \displaystyle y=kx+m, the gradient of the tangent, \displaystyle k, is given by the value of the curve's derivative, \displaystyle {y}'=-2x, at \displaystyle x=x_{0},


\displaystyle k=-2x_{0}\quad \quad \quad \left( 2 \right)

The condition that the tangent goes through the point \displaystyle \left( x_{0} \right.,\left. y_{0} \right) gives us that


\displaystyle y_{0}=k\centerdot x_{0}+m\quad \quad \quad \left( 3 \right)


In addition to this, the tangent should also pass through the point \displaystyle \left( 1 \right.,\left. 1 \right),


\displaystyle 1=k\centerdot 1+m\quad \quad \quad \left( 4 \right)


Equations (1)-(4) constitute an equation system in the unknowns \displaystyle x_{0},\ y_{0},\ k and \displaystyle m.

Because we are looking for \displaystyle x_{0}\text{ } and \displaystyle y_{0}, the first step is to try and eliminate \displaystyle k and \displaystyle m from the equations.

Equation (2) gives that \displaystyle k=-\text{2 }x_{0} and substituting this into equation (4) gives


\displaystyle 1=-2x_{0}+m\quad \Leftrightarrow \quad m=2x_{0}+1

With \displaystyle k and \displaystyle m expressed in terms of \displaystyle x_{0} and \displaystyle y_{0}, (3) becomes an equation that is expressed completely in terms of \displaystyle x_{0} and \displaystyle y_{0},


\displaystyle y_{0}=-2x_{0}^{2}+2x_{0}+1\quad \quad \quad \left( 3' \right)


This equation, together with (1), is an equation system in \displaystyle x_{0} and \displaystyle y_{0}


\displaystyle \left\{ \begin{array}{*{35}l} y_{0}=-x_{0}^{2} \\ y_{0}=-2x_{0}^{2}+2x_{0}+1 \\ \end{array} \right.


Substituting equation (1) into (3') gives us an equation in x0,


\displaystyle -x_{0}^{2}=-2x_{0}^{2}+2x_{0}+1

i.e.


\displaystyle x_{0}^{2}-2x_{0}-1=0


This second-degree equation has solutions


\displaystyle x_{0}=1-\sqrt{2} and \displaystyle x_{0}=1+\sqrt{2}


Equation (1) gives the corresponding y-values:


\displaystyle y_{0}=-3+2\sqrt{2} and \displaystyle y_{0}=-3-2\sqrt{2}


Thus, the answers are the points \displaystyle \left( 1-\sqrt{2} \right.,\left. -3+2\sqrt{2} \right) and \displaystyle \left( 1+\sqrt{2} \right.,\left. -3-2\sqrt{2} \right).