Lösung 1.1:2d
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 1.1:2d moved to Solution 1.1:2d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | If we write |
- | < | + | <math>\sqrt{x}</math> |
- | {{ | + | in power form |
+ | <math>x^{{1}/{2}\;}</math>, we see that the square root is a function having the appearance of | ||
+ | <math>x^{n}</math> | ||
+ | and its derivative is therefore equal to | ||
+ | |||
+ | |||
+ | <math>{f}'\left( x \right)=\frac{d}{dx}\sqrt{x}=\frac{d}{dx}x^{{1}/{2}\;}=\frac{1}{2}x^{\frac{1}{2}-1}=\frac{1}{2}x^{-\frac{1}{2}}</math> | ||
+ | |||
+ | The answer can also be written as | ||
+ | |||
+ | |||
+ | <math>{f}'\left( x \right)=\frac{1}{2\sqrt{x}}</math> | ||
+ | |||
+ | |||
+ | because | ||
+ | <math>x^{-\frac{1}{2}}=\left( x^{\frac{1}{2}} \right)^{-1}=\left( \sqrt{x} \right)^{-1}=\frac{1}{\sqrt{x}}</math> |
Version vom 11:30, 10. Okt. 2008
If we write \displaystyle \sqrt{x} in power form \displaystyle x^{{1}/{2}\;}, we see that the square root is a function having the appearance of \displaystyle x^{n} and its derivative is therefore equal to
\displaystyle {f}'\left( x \right)=\frac{d}{dx}\sqrt{x}=\frac{d}{dx}x^{{1}/{2}\;}=\frac{1}{2}x^{\frac{1}{2}-1}=\frac{1}{2}x^{-\frac{1}{2}}
The answer can also be written as
\displaystyle {f}'\left( x \right)=\frac{1}{2\sqrt{x}}
because
\displaystyle x^{-\frac{1}{2}}=\left( x^{\frac{1}{2}} \right)^{-1}=\left( \sqrt{x} \right)^{-1}=\frac{1}{\sqrt{x}}