2.1 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Zeile 84: Zeile 84:
|-
|-
|b)
|b)
-
|width="100%"| <math>\displaystyle \int \sin^2 x\ dx\quad</math> (Hinweis: schreibe den Integrand mit einer trigonometrischen Identität um)
+
|width="100%"| <math>\displaystyle \int \sin^2 x\ dx\quad</math> (Hinweis: schreibe den Integrand mit einer trigonometrischen Identität um)
|}
|}
</div>{{#NAVCONTENT:Antwort|Antwort 2.1:5|Lösung a|Lösung 2.1:5a|Lösung b|Lösung 2.1:5b}}
</div>{{#NAVCONTENT:Antwort|Antwort 2.1:5|Lösung a|Lösung 2.1:5a|Lösung b|Lösung 2.1:5b}}

Version vom 11:33, 27. Aug. 2009

       Theorie          Übungen      

Übung 2.1:1

Interpretiere folgende Integrale als eine Fläche und berechne die Integrale.

a) \displaystyle \displaystyle\int_{-1}^{2} 2\, dx b) \displaystyle \displaystyle\int_{0}^{1} (2x+1)\, dx
c) \displaystyle \displaystyle \int_{0}^{2} (3-2x)\, dx d) \displaystyle \displaystyle\int_{-1}^{2}|x| \, dx

Übung 2.1:2

Berechne die Integrale.

a) \displaystyle \displaystyle\int_{0}^{2} (x^2+3x^3)\, dx b) \displaystyle \displaystyle\int_{-1}^{2} (x-2)(x+1)\, dx
c) \displaystyle \displaystyle\int_{4}^{9} \left(\sqrt{x} - \displaystyle\frac{1}{\sqrt{x}}\right)\, dx d) \displaystyle \displaystyle\int_{1}^{4} \displaystyle\frac{\sqrt{x}}{x^2}\, dx

Übung 2.1:3

Berechne die Integrale.

a) \displaystyle \displaystyle\int \sin x\, dx b) \displaystyle \displaystyle\int 2\sin x \cos x\, dx
c) \displaystyle \displaystyle\int e^{2x}(e^x+1)\, dx d) \displaystyle \displaystyle\int \displaystyle\frac{x^2+1}{x}\, dx

Übung 2.1:4

a) Berechne die Fläche zwischen \displaystyle y=\sin x und der \displaystyle x-Achse für \displaystyle 0\le x \le \frac{5\pi}{4}.
b) Berechne die Fläche zwischen der Funktion \displaystyle y=-x^2+2x+2 und der \displaystyle x-Achse.
c) Berechne die Fläche des endlichen Gebietes zwischen den Funktionen \displaystyle y=\frac{1}{4}x^2+2 und \displaystyle y=8-\frac{1}{8}x^2 \,.
d) Berechne die Fläche des Gebietes zwischen den Funktionen \displaystyle y=x+2, y=1 und \displaystyle y=\frac{1}{x}.
e) Berechne die Fläche des Gebietes, das durch die Ungleichung \displaystyle x^2\le y\le x+2 definiert ist.

Übung 2.1:5

Berechne das Integral.

a) \displaystyle \displaystyle \int \displaystyle\frac{dx}{\sqrt{x+9}-\sqrt{x}}\quad (Hinweis: erweitere Bruch mit dem konjugierten Nenner)
b) \displaystyle \displaystyle \int \sin^2 x\ dx\quad (Hinweis: schreibe den Integrand mit einer trigonometrischen Identität um)