Lösung 2.2:2d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
K (Solution 2.2:2d moved to Lösung 2.2:2d: Robot: moved page)

Version vom 10:22, 11. Mär. 2009

What makes the integral not entirely simple is the expression \displaystyle 1-x under the root sign, so we try the substitution \displaystyle u=1-x,

\displaystyle \int\limits_0^1 \sqrt[3]{1-x}\,dx = \left\{ \begin{align}

u &= 1-x\\[5pt] du &= (1-x)'\,dx = -\,dx \end{align} \right\} = -\int\limits_1^0 \sqrt[3]{u}\,du\,\textrm{.}

Note how the new limits of integration go from 1 to 0 (and not the other way around!). It is possible to change the order of the limits if we change sign at the same time, i.e.

\displaystyle -\int\limits_1^0 \sqrt[3]{u}\,du = +\int\limits_0^1 \sqrt[3]{u}\,du\,\textrm{.}

All that is now left is routine calculations,

\displaystyle \begin{align}

\int\limits_0^1 \sqrt[3]{u}\,du &= \int\limits_0^1 u^{1/3}\,du = \biggl[\ \frac{u^{1/3+1}}{\tfrac{1}{3}+1}\ \biggr]_0^1\\[5pt] &= \frac{3}{4}\Bigl[\ u^{4/3}\ \Bigr]_0^1 = \frac{3}{4}\bigl( 1^{4/3}-0^{4/3} \bigr) = \frac{3}{4}\,\textrm{.} \end{align}