Lösung 3.3:1b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
First, we write the number
+
First, we write the number <math>\frac{1}{2}+i\frac{\sqrt{3}}{2}</math> in polar form.
-
<math>\frac{1}{2}+i\frac{\sqrt{3}}{2}</math>
+
-
in polar form.
+
-
 
+
<center>[[Image:3_3_1_b.gif]] [[Image:3_3_1_b_text.gif]]</center>
-
[[Image:3_3_1_b.gif]] [[Image:3_3_1_b_text.gif]]
+
Thus,
Thus,
-
 
+
{{Displayed math||<math>\frac{1}{2}+i\frac{\sqrt{3}}{2} = 1\cdot \Bigl(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\Bigr)</math>}}
-
<math>\frac{1}{2}+i\frac{\sqrt{3}}{2}=1\centerdot \left( \cos \frac{\pi }{3}+i\sin \frac{\pi }{3} \right)</math>
+
-
 
+
and de Moivre's formula gives
and de Moivre's formula gives
-
 
+
{{Displayed math||<math>\begin{align}
-
<math>\begin{align}
+
\Bigl(\frac{1}{2}+i\frac{\sqrt{3}}{2}\Bigr)^{12}
-
& \left( \frac{1}{2}+i\frac{\sqrt{3}}{2} \right)^{12}=1^{12}\centerdot \left( \cos 12\centerdot \frac{\pi }{3}+i\sin 12\centerdot \frac{\pi }{3} \right) \\
+
&= 1^{12}\cdot\Bigl(\cos\Bigl(12\cdot\frac{\pi}{3}\Bigr) + i\sin\Bigl(12\cdot\frac{\pi}{3}\Bigr)\Bigr)\\[5pt]
-
& =1\centerdot \left( \cos 4\pi +i\sin 4\pi \right) \\
+
&= 1\cdot (\cos 4\pi + i\sin 4\pi)\\[5pt]
-
& =1\centerdot \left( 1+i\centerdot 0 \right)=1 \\
+
&= 1\cdot (1+i\cdot 0)\\[5pt]
-
\end{align}</math>
+
&= 1\,\textrm{.}
 +
\end{align}</math>}}

Version vom 08:55, 30. Okt. 2008

First, we write the number \displaystyle \frac{1}{2}+i\frac{\sqrt{3}}{2} in polar form.

Image:3_3_1_b.gif Image:3_3_1_b_text.gif

Thus,

\displaystyle \frac{1}{2}+i\frac{\sqrt{3}}{2} = 1\cdot \Bigl(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\Bigr)

and de Moivre's formula gives

\displaystyle \begin{align}

\Bigl(\frac{1}{2}+i\frac{\sqrt{3}}{2}\Bigr)^{12} &= 1^{12}\cdot\Bigl(\cos\Bigl(12\cdot\frac{\pi}{3}\Bigr) + i\sin\Bigl(12\cdot\frac{\pi}{3}\Bigr)\Bigr)\\[5pt] &= 1\cdot (\cos 4\pi + i\sin 4\pi)\\[5pt] &= 1\cdot (1+i\cdot 0)\\[5pt] &= 1\,\textrm{.} \end{align}