Lösung 3.3:1b
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | First, we write the number | + | First, we write the number <math>\frac{1}{2}+i\frac{\sqrt{3}}{2}</math> in polar form. |
- | <math>\frac{1}{2}+i\frac{\sqrt{3}}{2}</math> | + | |
- | in polar form. | + | |
- | + | <center>[[Image:3_3_1_b.gif]] [[Image:3_3_1_b_text.gif]]</center> | |
- | [[Image:3_3_1_b.gif]] [[Image:3_3_1_b_text.gif]] | + | |
Thus, | Thus, | ||
- | + | {{Displayed math||<math>\frac{1}{2}+i\frac{\sqrt{3}}{2} = 1\cdot \Bigl(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\Bigr)</math>}} | |
- | <math>\frac{1}{2}+i\frac{\sqrt{3}}{2}=1\ | + | |
- | + | ||
and de Moivre's formula gives | and de Moivre's formula gives | ||
- | + | {{Displayed math||<math>\begin{align} | |
- | <math>\begin{align} | + | \Bigl(\frac{1}{2}+i\frac{\sqrt{3}}{2}\Bigr)^{12} |
- | + | &= 1^{12}\cdot\Bigl(\cos\Bigl(12\cdot\frac{\pi}{3}\Bigr) + i\sin\Bigl(12\cdot\frac{\pi}{3}\Bigr)\Bigr)\\[5pt] | |
- | & =1\ | + | &= 1\cdot (\cos 4\pi + i\sin 4\pi)\\[5pt] |
- | & =1\ | + | &= 1\cdot (1+i\cdot 0)\\[5pt] |
- | \end{align}</math> | + | &= 1\,\textrm{.} |
+ | \end{align}</math>}} |
Version vom 08:55, 30. Okt. 2008
First, we write the number \displaystyle \frac{1}{2}+i\frac{\sqrt{3}}{2} in polar form.


Thus,
\displaystyle \frac{1}{2}+i\frac{\sqrt{3}}{2} = 1\cdot \Bigl(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\Bigr) |
and de Moivre's formula gives
\displaystyle \begin{align}
\Bigl(\frac{1}{2}+i\frac{\sqrt{3}}{2}\Bigr)^{12} &= 1^{12}\cdot\Bigl(\cos\Bigl(12\cdot\frac{\pi}{3}\Bigr) + i\sin\Bigl(12\cdot\frac{\pi}{3}\Bigr)\Bigr)\\[5pt] &= 1\cdot (\cos 4\pi + i\sin 4\pi)\\[5pt] &= 1\cdot (1+i\cdot 0)\\[5pt] &= 1\,\textrm{.} \end{align} |