Lösung 2.2:3d
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
Observe that the derivative of the denominator is, for the most part, equal to the numerator, | Observe that the derivative of the denominator is, for the most part, equal to the numerator, | ||
- | + | {{Displayed math||<math>(x^2+2x+2)' = 2x+2 = 2(x+1)</math>}} | |
- | <math> | + | |
- | + | ||
so we can rewrite the integral as | so we can rewrite the integral as | ||
+ | {{Displayed math||<math>\int \frac{\tfrac{1}{2}}{x^2+2x+2}\cdot (x^2+2x+2)'\,dx\,\textrm{.}</math>}} | ||
- | + | The substitution <math>u=x^2+2x+2</math> will therefore simplify the integral considerably, | |
- | + | ||
- | + | ||
- | The substitution | + | |
- | <math>u=x^ | + | |
- | will therefore simplify the integral considerably | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>\begin{align} | ||
+ | \int \frac{x+1}{x^2+2x+2}\,dx | ||
+ | &= \left\{\begin{align} | ||
+ | u &= x^2+2x+2\\[5pt] | ||
+ | du &= (x^2+2x+2)'\,dx = 2(x+1)\,dx | ||
+ | \end{align}\right\}\\[5pt] | ||
+ | &= \frac{1}{2}\int \frac{du}{u}\\[5pt] | ||
+ | &= \frac{1}{2}\ln |u| + C\\[5pt] | ||
+ | &= \frac{1}{2}\ln |x^2+2x+2| + C\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
- | <math>x^{2}+2x+2=\left( x+1 \right)^{2}-1^{2}+2=\left( x+1 \right)^{2}+1</math> | ||
+ | Note: By completing the square | ||
- | + | {{Displayed math||<math>x^2+2x+2 = (x+1)^2-1^2+2 = (x+1)^2+1</math>}} | |
- | <math>x^ | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
+ | we see that <math>x^2+2x+2</math> is always greater than or equal to 1, so we can take away the absolute sign around the argument in <math>\ln</math> and answer with | ||
- | <math>\frac{1}{2}\ln | + | {{Displayed math||<math>\frac{1}{2}\ln (x^2+2x+2) + C\,\textrm{.}</math>}} |
Version vom 14:34, 28. Okt. 2008
Observe that the derivative of the denominator is, for the most part, equal to the numerator,
\displaystyle (x^2+2x+2)' = 2x+2 = 2(x+1) |
so we can rewrite the integral as
\displaystyle \int \frac{\tfrac{1}{2}}{x^2+2x+2}\cdot (x^2+2x+2)'\,dx\,\textrm{.} |
The substitution \displaystyle u=x^2+2x+2 will therefore simplify the integral considerably,
\displaystyle \begin{align}
\int \frac{x+1}{x^2+2x+2}\,dx &= \left\{\begin{align} u &= x^2+2x+2\\[5pt] du &= (x^2+2x+2)'\,dx = 2(x+1)\,dx \end{align}\right\}\\[5pt] &= \frac{1}{2}\int \frac{du}{u}\\[5pt] &= \frac{1}{2}\ln |u| + C\\[5pt] &= \frac{1}{2}\ln |x^2+2x+2| + C\,\textrm{.} \end{align} |
Note: By completing the square
\displaystyle x^2+2x+2 = (x+1)^2-1^2+2 = (x+1)^2+1 |
we see that \displaystyle x^2+2x+2 is always greater than or equal to 1, so we can take away the absolute sign around the argument in \displaystyle \ln and answer with
\displaystyle \frac{1}{2}\ln (x^2+2x+2) + C\,\textrm{.} |