Lösung 1.2:3d
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
We differentiate the function successively, one part at a time, | We differentiate the function successively, one part at a time, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\frac{d}{dx}\,\sin \bbox[#FFEEAA;,1.5pt]{\cos\sin x} = \cos \bbox[#FFEEAA;,1.5pt]{\cos\sin x}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\cos\sin x}\bigr)'\,,</math>}} |
and the next differentiation becomes | and the next differentiation becomes | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\frac{d}{dx}\,\cos \bbox[#FFEEAA;,1.5pt]{\sin x} | \frac{d}{dx}\,\cos \bbox[#FFEEAA;,1.5pt]{\sin x} | ||
&= -\sin \bbox[#FFEEAA;,1.5pt]{\sin x}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\sin x}\bigr)'\\[5pt] | &= -\sin \bbox[#FFEEAA;,1.5pt]{\sin x}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\sin x}\bigr)'\\[5pt] | ||
Zeile 13: | Zeile 13: | ||
The answer is thus | The answer is thus | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\frac{d}{dx}\,\sin \cos \sin x | \frac{d}{dx}\,\sin \cos \sin x | ||
&= \cos \cos \sin x\cdot ( -\sin \sin x\cdot \cos x)\\[5pt] | &= \cos \cos \sin x\cdot ( -\sin \sin x\cdot \cos x)\\[5pt] | ||
&= -\cos \cos \sin x\cdot \sin \sin x\cdot \cos x\,\textrm{.} | &= -\cos \cos \sin x\cdot \sin \sin x\cdot \cos x\,\textrm{.} | ||
\end{align}</math>}} | \end{align}</math>}} |
Version vom 12:54, 10. Mär. 2009
We differentiate the function successively, one part at a time,
\displaystyle \frac{d}{dx}\,\sin \bbox[#FFEEAA;,1.5pt]{\cos\sin x} = \cos \bbox[#FFEEAA;,1.5pt]{\cos\sin x}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\cos\sin x}\bigr)'\,, |
and the next differentiation becomes
\displaystyle \begin{align}
\frac{d}{dx}\,\cos \bbox[#FFEEAA;,1.5pt]{\sin x} &= -\sin \bbox[#FFEEAA;,1.5pt]{\sin x}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\sin x}\bigr)'\\[5pt] &= -\sin \sin x\cdot \cos x\,\textrm{.} \end{align} |
The answer is thus
\displaystyle \begin{align}
\frac{d}{dx}\,\sin \cos \sin x &= \cos \cos \sin x\cdot ( -\sin \sin x\cdot \cos x)\\[5pt] &= -\cos \cos \sin x\cdot \sin \sin x\cdot \cos x\,\textrm{.} \end{align} |