Lösung 1.2:4b
Aus Online Mathematik Brückenkurs 2
K |
|||
Zeile 1: | Zeile 1: | ||
- | To start with, we determine the first derivative and begin by using the product rule | + | To start with, we determine the first derivative and begin by using the product rule, |
+ | {{Displayed math||<math>\begin{align} | ||
+ | \frac{d}{dx}\,\bigl[x(\sin\ln x + \cos\ln x)\bigr] | ||
+ | &= (x)'\cdot (\sin\ln x + \cos\ln x) + x\cdot (\sin\ln x + \cos\ln x)'\\[5pt] | ||
+ | &= 1\cdot (\sin\ln x + \cos\ln x) + x\cdot (\sin\ln x + \cos\ln x)'\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
- | + | We divide up the differentiation of the second term in sections and use the chain rule, | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | We divide up the differentiation of the second term in sections and use the chain rule | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>\begin{align} | ||
+ | (\sin\ln x + \cos\ln x)' | ||
+ | &= (\sin\ln x)' + (\cos\ln x)'\\[5pt] | ||
+ | &= \cos\ln x\cdot (\ln x)' - \sin\ln x\cdot (\ln x)'\\[5pt] | ||
+ | &= \cos\ln x\cdot\frac{1}{x} - \sin\ln x\cdot\frac{1}{x}\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
This means that | This means that | ||
- | + | {{Displayed math||<math>\begin{align} | |
- | <math>\begin{align} | + | \frac{d}{dx}\,\bigl[x(\sin\ln x + \cos\ln x)\bigr] |
- | + | &= \sin \ln x + \cos \ln x + \cos \ln x - \sin \ln x\\[5pt] | |
- | & =\sin \ln x+\cos \ln x+\cos \ln x-\sin \ln x \\ | + | &= 2\cos \ln x\,\textrm{.} |
- | & =2\cos \ln x \\ | + | \end{align}</math>}} |
- | \end{align}</math> | + | |
- | + | ||
The second derivative is | The second derivative is | ||
- | + | {{Displayed math||<math>\begin{align} | |
- | <math>\begin{align} | + | \frac{d}{dx}\,2\cos\ln x |
- | + | &= -2\sin\ln x\cdot (\ln x)'\\[5pt] | |
- | & =-2\sin \ln x\ | + | &= -2\sin\ln x\cdot \frac{1}{x}\\[5pt] |
- | \end{align}</math> | + | &= -\frac{2\sin\ln x}{x}\,\textrm{.} |
+ | \end{align}</math>}} |
Version vom 13:58, 15. Okt. 2008
To start with, we determine the first derivative and begin by using the product rule,
\displaystyle \begin{align}
\frac{d}{dx}\,\bigl[x(\sin\ln x + \cos\ln x)\bigr] &= (x)'\cdot (\sin\ln x + \cos\ln x) + x\cdot (\sin\ln x + \cos\ln x)'\\[5pt] &= 1\cdot (\sin\ln x + \cos\ln x) + x\cdot (\sin\ln x + \cos\ln x)'\,\textrm{.} \end{align} |
We divide up the differentiation of the second term in sections and use the chain rule,
\displaystyle \begin{align}
(\sin\ln x + \cos\ln x)' &= (\sin\ln x)' + (\cos\ln x)'\\[5pt] &= \cos\ln x\cdot (\ln x)' - \sin\ln x\cdot (\ln x)'\\[5pt] &= \cos\ln x\cdot\frac{1}{x} - \sin\ln x\cdot\frac{1}{x}\,\textrm{.} \end{align} |
This means that
\displaystyle \begin{align}
\frac{d}{dx}\,\bigl[x(\sin\ln x + \cos\ln x)\bigr] &= \sin \ln x + \cos \ln x + \cos \ln x - \sin \ln x\\[5pt] &= 2\cos \ln x\,\textrm{.} \end{align} |
The second derivative is
\displaystyle \begin{align}
\frac{d}{dx}\,2\cos\ln x &= -2\sin\ln x\cdot (\ln x)'\\[5pt] &= -2\sin\ln x\cdot \frac{1}{x}\\[5pt] &= -\frac{2\sin\ln x}{x}\,\textrm{.} \end{align} |