Lösung 1.2:4b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
To start with, we determine the first derivative and begin by using the product rule:
+
To start with, we determine the first derivative and begin by using the product rule,
 +
{{Displayed math||<math>\begin{align}
 +
\frac{d}{dx}\,\bigl[x(\sin\ln x + \cos\ln x)\bigr]
 +
&= (x)'\cdot (\sin\ln x + \cos\ln x) + x\cdot (\sin\ln x + \cos\ln x)'\\[5pt]
 +
&= 1\cdot (\sin\ln x + \cos\ln x) + x\cdot (\sin\ln x + \cos\ln x)'\,\textrm{.}
 +
\end{align}</math>}}
-
<math>\begin{align}
+
We divide up the differentiation of the second term in sections and use the chain rule,
-
& \frac{d}{dx}x\left( \sin \ln x+\cos \ln x \right) \\
+
-
& =\left( x \right)^{\prime }\centerdot \left( \sin \ln x+\cos \ln x \right)+x\centerdot \left( \sin \ln x+\cos \ln x \right)^{\prime } \\
+
-
& =1\centerdot \left( \sin \ln x+\cos \ln x \right)+x\centerdot \left( \sin \ln x+\cos \ln x \right)^{\prime } \\
+
-
\end{align}</math>
+
-
 
+
-
 
+
-
We divide up the differentiation of the second term in sections and use the chain rule:
+
-
 
+
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& \left( \sin \ln x+\cos \ln x \right)^{\prime }=\left( \sin \ln x \right)^{\prime }+\left( \cos \ln x \right)^{\prime } \\
+
-
& =\cos \ln x\centerdot \left( \ln x \right)^{\prime }-\sin \ln x\centerdot \left( \ln x \right)^{\prime } \\
+
-
& =\cos \ln x\centerdot \frac{1}{x}-\sin \ln x\centerdot \frac{1}{x} \\
+
-
\end{align}</math>
+
 +
{{Displayed math||<math>\begin{align}
 +
(\sin\ln x + \cos\ln x)'
 +
&= (\sin\ln x)' + (\cos\ln x)'\\[5pt]
 +
&= \cos\ln x\cdot (\ln x)' - \sin\ln x\cdot (\ln x)'\\[5pt]
 +
&= \cos\ln x\cdot\frac{1}{x} - \sin\ln x\cdot\frac{1}{x}\,\textrm{.}
 +
\end{align}</math>}}
This means that
This means that
-
 
+
{{Displayed math||<math>\begin{align}
-
<math>\begin{align}
+
\frac{d}{dx}\,\bigl[x(\sin\ln x + \cos\ln x)\bigr]
-
& \frac{d}{dx}x\left( \sin \ln x+\cos \ln x \right) \\
+
&= \sin \ln x + \cos \ln x + \cos \ln x - \sin \ln x\\[5pt]
-
& =\sin \ln x+\cos \ln x+\cos \ln x-\sin \ln x \\
+
&= 2\cos \ln x\,\textrm{.}
-
& =2\cos \ln x \\
+
\end{align}</math>}}
-
\end{align}</math>
+
-
 
+
The second derivative is
The second derivative is
-
 
+
{{Displayed math||<math>\begin{align}
-
<math>\begin{align}
+
\frac{d}{dx}\,2\cos\ln x
-
& \frac{d}{dx}2\cos \ln x=-2\sin \ln x\centerdot \left( \ln x \right)^{\prime } \\
+
&= -2\sin\ln x\cdot (\ln x)'\\[5pt]
-
& =-2\sin \ln x\centerdot \frac{1}{x}=-\frac{2\sin \ln x}{x} \\
+
&= -2\sin\ln x\cdot \frac{1}{x}\\[5pt]
-
\end{align}</math>
+
&= -\frac{2\sin\ln x}{x}\,\textrm{.}
 +
\end{align}</math>}}

Version vom 13:58, 15. Okt. 2008

To start with, we determine the first derivative and begin by using the product rule,

\displaystyle \begin{align}

\frac{d}{dx}\,\bigl[x(\sin\ln x + \cos\ln x)\bigr] &= (x)'\cdot (\sin\ln x + \cos\ln x) + x\cdot (\sin\ln x + \cos\ln x)'\\[5pt] &= 1\cdot (\sin\ln x + \cos\ln x) + x\cdot (\sin\ln x + \cos\ln x)'\,\textrm{.} \end{align}

We divide up the differentiation of the second term in sections and use the chain rule,

\displaystyle \begin{align}

(\sin\ln x + \cos\ln x)' &= (\sin\ln x)' + (\cos\ln x)'\\[5pt] &= \cos\ln x\cdot (\ln x)' - \sin\ln x\cdot (\ln x)'\\[5pt] &= \cos\ln x\cdot\frac{1}{x} - \sin\ln x\cdot\frac{1}{x}\,\textrm{.} \end{align}

This means that

\displaystyle \begin{align}

\frac{d}{dx}\,\bigl[x(\sin\ln x + \cos\ln x)\bigr] &= \sin \ln x + \cos \ln x + \cos \ln x - \sin \ln x\\[5pt] &= 2\cos \ln x\,\textrm{.} \end{align}

The second derivative is

\displaystyle \begin{align}

\frac{d}{dx}\,2\cos\ln x &= -2\sin\ln x\cdot (\ln x)'\\[5pt] &= -2\sin\ln x\cdot \frac{1}{x}\\[5pt] &= -\frac{2\sin\ln x}{x}\,\textrm{.} \end{align}