Lösung 1.2:3d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
We differentiate the function successively, one part at a time,
We differentiate the function successively, one part at a time,
-
 
+
{{Displayed math||<math>\frac{d}{dx}\,\sin \bbox[#FFEEAA;,1.5pt]{\cos\sin x} = \cos \bbox[#FFEEAA;,1.5pt]{\cos\sin x}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\cos\sin x}\bigr)'\,,</math>}}
-
<math>\frac{d}{dx}\sin \left\{ \left. \cos \sin x \right\} \right.=\cos \left\{ \left. \cos \sin x \right\} \right.\centerdot \left( \left\{ \left. \cos \sin x \right\} \right. \right)^{\prime }</math>,
+
and the next differentiation becomes
and the next differentiation becomes
-
 
+
{{Displayed math||<math>\begin{align}
-
<math>\begin{align}
+
\frac{d}{dx}\,\cos \bbox[#FFEEAA;,1.5pt]{\sin x}
-
& \frac{d}{dx}\cos \left\{ \left. \sin x \right\} \right.=-\sin \left\{ \left. \sin x \right\} \right.\centerdot \left( \sin x \right)^{\prime } \\
+
&= -\sin \bbox[#FFEEAA;,1.5pt]{\sin x}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\sin x}\bigr)'\\[5pt]
-
& =-\sin \sin x\centerdot \cos x \\
+
&= -\sin \sin x\cdot \cos x\,\textrm{.}
-
\end{align}</math>
+
\end{align}</math>}}
-
 
+
The answer is thus
The answer is thus
-
 
+
{{Displayed math||<math>\begin{align}
-
<math>\begin{align}
+
\frac{d}{dx}\,\sin \cos \sin x
-
& \frac{d}{dx}\sin \cos \sin x=\cos \cos \sin x\centerdot \left( -\sin \sin x\centerdot \cos x \right) \\
+
&= \cos \cos \sin x\cdot ( -\sin \sin x\cdot \cos x)\\[5pt]
-
& =-\cos \cos \sin x\centerdot \sin \sin x\centerdot \cos x \\
+
&= -\cos \cos \sin x\cdot \sin \sin x\cdot \cos x\,\textrm{.}
-
\end{align}</math>
+
\end{align}</math>}}

Version vom 13:04, 15. Okt. 2008

We differentiate the function successively, one part at a time,

\displaystyle \frac{d}{dx}\,\sin \bbox[#FFEEAA;,1.5pt]{\cos\sin x} = \cos \bbox[#FFEEAA;,1.5pt]{\cos\sin x}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\cos\sin x}\bigr)'\,,

and the next differentiation becomes

\displaystyle \begin{align}

\frac{d}{dx}\,\cos \bbox[#FFEEAA;,1.5pt]{\sin x} &= -\sin \bbox[#FFEEAA;,1.5pt]{\sin x}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\sin x}\bigr)'\\[5pt] &= -\sin \sin x\cdot \cos x\,\textrm{.} \end{align}

The answer is thus

\displaystyle \begin{align}

\frac{d}{dx}\,\sin \cos \sin x &= \cos \cos \sin x\cdot ( -\sin \sin x\cdot \cos x)\\[5pt] &= -\cos \cos \sin x\cdot \sin \sin x\cdot \cos x\,\textrm{.} \end{align}