Lösung 1.2:3d
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
We differentiate the function successively, one part at a time, | We differentiate the function successively, one part at a time, | ||
- | + | {{Displayed math||<math>\frac{d}{dx}\,\sin \bbox[#FFEEAA;,1.5pt]{\cos\sin x} = \cos \bbox[#FFEEAA;,1.5pt]{\cos\sin x}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\cos\sin x}\bigr)'\,,</math>}} | |
- | <math>\frac{d}{dx}\sin \ | + | |
and the next differentiation becomes | and the next differentiation becomes | ||
- | + | {{Displayed math||<math>\begin{align} | |
- | <math>\begin{align} | + | \frac{d}{dx}\,\cos \bbox[#FFEEAA;,1.5pt]{\sin x} |
- | + | &= -\sin \bbox[#FFEEAA;,1.5pt]{\sin x}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\sin x}\bigr)'\\[5pt] | |
- | & =-\sin \sin x\ | + | &= -\sin \sin x\cdot \cos x\,\textrm{.} |
- | \end{align}</math> | + | \end{align}</math>}} |
- | + | ||
The answer is thus | The answer is thus | ||
- | + | {{Displayed math||<math>\begin{align} | |
- | <math>\begin{align} | + | \frac{d}{dx}\,\sin \cos \sin x |
- | + | &= \cos \cos \sin x\cdot ( -\sin \sin x\cdot \cos x)\\[5pt] | |
- | & =-\cos \cos \sin x\ | + | &= -\cos \cos \sin x\cdot \sin \sin x\cdot \cos x\,\textrm{.} |
- | \end{align}</math> | + | \end{align}</math>}} |
Version vom 13:04, 15. Okt. 2008
We differentiate the function successively, one part at a time,
\displaystyle \frac{d}{dx}\,\sin \bbox[#FFEEAA;,1.5pt]{\cos\sin x} = \cos \bbox[#FFEEAA;,1.5pt]{\cos\sin x}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\cos\sin x}\bigr)'\,, |
and the next differentiation becomes
\displaystyle \begin{align}
\frac{d}{dx}\,\cos \bbox[#FFEEAA;,1.5pt]{\sin x} &= -\sin \bbox[#FFEEAA;,1.5pt]{\sin x}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\sin x}\bigr)'\\[5pt] &= -\sin \sin x\cdot \cos x\,\textrm{.} \end{align} |
The answer is thus
\displaystyle \begin{align}
\frac{d}{dx}\,\sin \cos \sin x &= \cos \cos \sin x\cdot ( -\sin \sin x\cdot \cos x)\\[5pt] &= -\cos \cos \sin x\cdot \sin \sin x\cdot \cos x\,\textrm{.} \end{align} |