Lösung 3.4:1c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.4:1c moved to Solution 3.4:1c: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
If we focus on the leading term
-
<center> [[Image:3_4_1c.gif]] </center>
+
<math>x^{3}</math>, we need to complement it with in order to get an expression that is divisible by the denominator ,
-
{{NAVCONTENT_STOP}}
+
 
 +
 
 +
<math>\frac{x^{3}+a^{3}}{x+a}=\frac{x^{3}+ax^{2}-ax^{2}+a^{3}}{x+a}</math>
 +
 
 +
 
 +
With this form on the right-hand side, we can separate away the first two terms in the numerator and have left a polynomial quotient with
 +
<math>-ax^{2}+a^{3}</math>
 +
in the numerator:
 +
 
 +
 
 +
<math>\begin{align}
 +
& \frac{x^{3}+ax^{2}-ax^{2}+a^{3}}{x+a}=\frac{x^{3}+ax^{2}}{x+a}+\frac{-ax^{2}+a^{3}}{x+a} \\
 +
& =\frac{x^{2}\left( x+a \right)}{x+a}+\frac{-ax^{2}+a^{3}}{x+a} \\
 +
& =x^{2}+\frac{-ax^{2}+a^{3}}{x+a} \\
 +
\end{align}</math>
 +
 
 +
 
 +
When we treat the new quotient, we add and take away
 +
<math>-a^{2}x</math>
 +
to/from
 +
<math>-ax^{2}</math>
 +
in order to get something divisible by
 +
<math>x+a</math>
 +
 
 +
 
 +
 
 +
<math>\begin{align}
 +
& x^{2}+\frac{-ax^{2}+a^{3}}{x+a}=x^{2}+\frac{-ax^{2}-a^{2}x+a^{2}x+a^{3}}{x+a} \\
 +
& =x^{2}+\frac{-ax^{2}-a^{2}x}{x+a}+\frac{a^{2}x+a^{3}}{x+a} \\
 +
& =x^{2}+\frac{-ax\left( x+a \right)}{x+a}+\frac{a^{2}x+a^{3}}{x+a} \\
 +
& =x^{2}-ax+\frac{a^{2}x+a^{3}}{x+a} \\
 +
\end{align}</math>
 +
 
 +
 
 +
In the last quotient, the numerator has
 +
<math>x+a</math>
 +
as a factor, and we obtain a perfect division:
 +
 
 +
 
 +
<math>x^{2}-ax+\frac{a^{2}x+a^{3}}{x+a}=x^{2}-ax+\frac{a^{2}\left( x+a \right)}{x+a}=x^{2}-ax+a^{2}</math>
 +
 
 +
 
 +
If we have calculated correctly, we should have
 +
 
 +
 
 +
<math>\frac{x^{3}+a^{3}}{x+a}=x^{2}-ax+a^{2}</math>
 +
 
 +
 
 +
and one way to check the answer is to multiply both sides by
 +
<math>x+a</math>,
 +
 
 +
 
 +
<math>x^{3}+a^{3}=\left( x^{2}-ax+a^{2} \right)\left( x+a \right)</math>
 +
 
 +
 
 +
Then, expand the right-hand side and then we should get what is on the left-hand side:
 +
 
 +
 
 +
<math>\begin{align}
 +
& \text{RHS}=\left( x^{2}-ax+a^{2} \right)\left( x+a \right)=x^{3}+ax^{2}-ax^{2}-a^{2}x+a^{2}x+a^{3} \\
 +
& =x^{3}+a^{3}=~~\text{LHS} \\
 +
\end{align}</math>

Version vom 13:04, 26. Okt. 2008

If we focus on the leading term \displaystyle x^{3}, we need to complement it with in order to get an expression that is divisible by the denominator ,


\displaystyle \frac{x^{3}+a^{3}}{x+a}=\frac{x^{3}+ax^{2}-ax^{2}+a^{3}}{x+a}


With this form on the right-hand side, we can separate away the first two terms in the numerator and have left a polynomial quotient with \displaystyle -ax^{2}+a^{3} in the numerator:


\displaystyle \begin{align} & \frac{x^{3}+ax^{2}-ax^{2}+a^{3}}{x+a}=\frac{x^{3}+ax^{2}}{x+a}+\frac{-ax^{2}+a^{3}}{x+a} \\ & =\frac{x^{2}\left( x+a \right)}{x+a}+\frac{-ax^{2}+a^{3}}{x+a} \\ & =x^{2}+\frac{-ax^{2}+a^{3}}{x+a} \\ \end{align}


When we treat the new quotient, we add and take away \displaystyle -a^{2}x to/from \displaystyle -ax^{2} in order to get something divisible by \displaystyle x+a


\displaystyle \begin{align} & x^{2}+\frac{-ax^{2}+a^{3}}{x+a}=x^{2}+\frac{-ax^{2}-a^{2}x+a^{2}x+a^{3}}{x+a} \\ & =x^{2}+\frac{-ax^{2}-a^{2}x}{x+a}+\frac{a^{2}x+a^{3}}{x+a} \\ & =x^{2}+\frac{-ax\left( x+a \right)}{x+a}+\frac{a^{2}x+a^{3}}{x+a} \\ & =x^{2}-ax+\frac{a^{2}x+a^{3}}{x+a} \\ \end{align}


In the last quotient, the numerator has \displaystyle x+a as a factor, and we obtain a perfect division:


\displaystyle x^{2}-ax+\frac{a^{2}x+a^{3}}{x+a}=x^{2}-ax+\frac{a^{2}\left( x+a \right)}{x+a}=x^{2}-ax+a^{2}


If we have calculated correctly, we should have


\displaystyle \frac{x^{3}+a^{3}}{x+a}=x^{2}-ax+a^{2}


and one way to check the answer is to multiply both sides by \displaystyle x+a,


\displaystyle x^{3}+a^{3}=\left( x^{2}-ax+a^{2} \right)\left( x+a \right)


Then, expand the right-hand side and then we should get what is on the left-hand side:


\displaystyle \begin{align} & \text{RHS}=\left( x^{2}-ax+a^{2} \right)\left( x+a \right)=x^{3}+ax^{2}-ax^{2}-a^{2}x+a^{2}x+a^{3} \\ & =x^{3}+a^{3}=~~\text{LHS} \\ \end{align}