Lösung 3.3:1b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.3:1b moved to Solution 3.3:1b: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
First, we write the number
-
<center> [[Image:3_3_1b.gif]] </center>
+
<math>\frac{1}{2}+i\frac{\sqrt{3}}{2}</math>
-
{{NAVCONTENT_STOP}}
+
in polar form.
 +
 
[[Image:3_3_1_b.gif]] [[Image:3_3_1_b_text.gif]]
[[Image:3_3_1_b.gif]] [[Image:3_3_1_b_text.gif]]
 +
 +
Thus,
 +
 +
 +
<math>\frac{1}{2}+i\frac{\sqrt{3}}{2}=1\centerdot \left( \cos \frac{\pi }{3}+i\sin \frac{\pi }{3} \right)</math>
 +
 +
 +
and de Moivre's formula gives
 +
 +
 +
<math>\begin{align}
 +
& \left( \frac{1}{2}+i\frac{\sqrt{3}}{2} \right)^{12}=1^{12}\centerdot \left( \cos 12\centerdot \frac{\pi }{3}+i\sin 12\centerdot \frac{\pi }{3} \right) \\
 +
& =1\centerdot \left( \cos 4\pi +i\sin 4\pi \right) \\
 +
& =1\centerdot \left( 1+i\centerdot 0 \right)=1 \\
 +
\end{align}</math>

Version vom 07:14, 24. Okt. 2008

First, we write the number \displaystyle \frac{1}{2}+i\frac{\sqrt{3}}{2} in polar form.


Image:3_3_1_b.gif Image:3_3_1_b_text.gif

Thus,


\displaystyle \frac{1}{2}+i\frac{\sqrt{3}}{2}=1\centerdot \left( \cos \frac{\pi }{3}+i\sin \frac{\pi }{3} \right)


and de Moivre's formula gives


\displaystyle \begin{align} & \left( \frac{1}{2}+i\frac{\sqrt{3}}{2} \right)^{12}=1^{12}\centerdot \left( \cos 12\centerdot \frac{\pi }{3}+i\sin 12\centerdot \frac{\pi }{3} \right) \\ & =1\centerdot \left( \cos 4\pi +i\sin 4\pi \right) \\ & =1\centerdot \left( 1+i\centerdot 0 \right)=1 \\ \end{align}