Lösung 2.2:3f

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.2:3f moved to Solution 2.2:3f: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Let's rewrite the integral somewhat:
-
<center> [[Image:2_2_3f.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>2\sin \sqrt{x}\centerdot \frac{1}{2\sqrt{x}}</math>
 +
 
 +
 
 +
Here, we see that the factor on the right,
 +
<math>\frac{1}{2\sqrt{x}}</math>
 +
is the derivative of the expression
 +
<math>\sqrt{x}</math>, which appears in the factor on the left,
 +
<math>2\sin \sqrt{x}</math>
 +
With the substitution
 +
<math>u=\sqrt{x}</math>, the integrand can therefore be written as
 +
 
 +
 
 +
<math>2\sin u\centerdot {u}'</math>
 +
 
 +
 
 +
and the integral becomes
 +
 
 +
 
 +
<math>\begin{align}
 +
& \int{\frac{\sin \sqrt{x}}{\sqrt{x}}}\,dx=\left\{ \begin{matrix}
 +
u=\sqrt{x} \\
 +
du=\left( \sqrt{x} \right)^{\prime }\,dx=\frac{1}{2\sqrt{x}}\,dx \\
 +
\end{matrix}\, \right\} \\
 +
& =2\int{\sin u\,du} \\
 +
& =-2\cos u+C \\
 +
& =-2\cos \sqrt{x}+C \\
 +
\end{align}</math>

Version vom 15:38, 28. Okt. 2008

Let's rewrite the integral somewhat:


\displaystyle 2\sin \sqrt{x}\centerdot \frac{1}{2\sqrt{x}}


Here, we see that the factor on the right, \displaystyle \frac{1}{2\sqrt{x}} is the derivative of the expression \displaystyle \sqrt{x}, which appears in the factor on the left, \displaystyle 2\sin \sqrt{x} With the substitution \displaystyle u=\sqrt{x}, the integrand can therefore be written as


\displaystyle 2\sin u\centerdot {u}'


and the integral becomes


\displaystyle \begin{align} & \int{\frac{\sin \sqrt{x}}{\sqrt{x}}}\,dx=\left\{ \begin{matrix} u=\sqrt{x} \\ du=\left( \sqrt{x} \right)^{\prime }\,dx=\frac{1}{2\sqrt{x}}\,dx \\ \end{matrix}\, \right\} \\ & =2\int{\sin u\,du} \\ & =-2\cos u+C \\ & =-2\cos \sqrt{x}+C \\ \end{align}