Lösung 2.2:3e

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.2:3e moved to Solution 2.2:3e: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
If we differentiate the denominator in the integrand
-
<center> [[Image:2_2_3e.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>3x=\frac{3}{2}\centerdot 2x=\frac{3}{2}\left( x^{2}+1 \right)^{\prime }</math>
 +
 
 +
 
 +
we obtain almost the same expression as in the numerator; there is a constant
 +
<math>\text{2}</math>
 +
which is different. We therefore rewrite the numerator as
 +
 
 +
 
 +
<math>3x=\frac{3}{2}\centerdot 2x=\frac{3}{2}\centerdot \left( x^{2}+1 \right)^{\prime }</math>,
 +
 
 +
so the integral can be written as
 +
 
 +
 
 +
<math>\int{\frac{\frac{3}{2}}{x^{2}+1}}\centerdot \left( x^{2}+1 \right)^{\prime }\,dx</math>,
 +
 
 +
and we see that the substitution
 +
<math>u=x^{2}+1</math>
 +
can be used to simplify the integral:
 +
 
 +
 
 +
<math>\begin{align}
 +
& \int{\frac{3x}{x^{2}+1}}\,dx=\left\{ \begin{matrix}
 +
u=x^{2}+1 \\
 +
du=\left( x^{2}+1 \right)^{\prime }\,dx=2x\,dx \\
 +
\end{matrix} \right\} \\
 +
& =\frac{3}{2}\int{\frac{\,du}{u}}=\frac{3}{2}\ln \left| u \right|+C \\
 +
& =\frac{3}{2}\ln \left| x^{2}+1 \right|+C \\
 +
& =\frac{3}{2}\ln \left( x^{2}+1 \right)+C \\
 +
\end{align}</math>
 +
 
 +
 
 +
In the last step, we take away the absolute sign around the argument in
 +
<math>\ln </math>, because
 +
<math>x^{2}+1</math>
 +
is always greater than or equal to
 +
<math>\text{1}</math>.

Version vom 11:16, 21. Okt. 2008

If we differentiate the denominator in the integrand


\displaystyle 3x=\frac{3}{2}\centerdot 2x=\frac{3}{2}\left( x^{2}+1 \right)^{\prime }


we obtain almost the same expression as in the numerator; there is a constant \displaystyle \text{2} which is different. We therefore rewrite the numerator as


\displaystyle 3x=\frac{3}{2}\centerdot 2x=\frac{3}{2}\centerdot \left( x^{2}+1 \right)^{\prime },

so the integral can be written as


\displaystyle \int{\frac{\frac{3}{2}}{x^{2}+1}}\centerdot \left( x^{2}+1 \right)^{\prime }\,dx,

and we see that the substitution \displaystyle u=x^{2}+1 can be used to simplify the integral:


\displaystyle \begin{align} & \int{\frac{3x}{x^{2}+1}}\,dx=\left\{ \begin{matrix} u=x^{2}+1 \\ du=\left( x^{2}+1 \right)^{\prime }\,dx=2x\,dx \\ \end{matrix} \right\} \\ & =\frac{3}{2}\int{\frac{\,du}{u}}=\frac{3}{2}\ln \left| u \right|+C \\ & =\frac{3}{2}\ln \left| x^{2}+1 \right|+C \\ & =\frac{3}{2}\ln \left( x^{2}+1 \right)+C \\ \end{align}


In the last step, we take away the absolute sign around the argument in \displaystyle \ln , because \displaystyle x^{2}+1 is always greater than or equal to \displaystyle \text{1}.