Lösung 2.2:3d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.2:3d moved to Solution 2.2:3d: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Observe that the derivative of the denominator is, for the most part, equal to the numerator,
-
<center> [[Image:2_2_3d.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\left( x^{2}+2x+2 \right)^{\prime }=2x+2=2\left( x+1 \right)</math>
 +
 
 +
 
 +
so we can rewrite the integral as
 +
 
 +
 
 +
<math>\int{\frac{\frac{1}{2}}{x^{2}+2x+2}}\centerdot \left( x^{2}+2x+2 \right)^{\prime }\,dx</math>
 +
 
 +
 
 +
The substitution
 +
<math>u=x^{2}+2x+2</math>
 +
will therefore simplify the integral considerably:
 +
 
 +
 
 +
<math>\begin{align}
 +
& \int{\frac{x+1}{x^{2}+2x+2}}\,dx=\left\{ \begin{matrix}
 +
u=x^{2}+2x+2 \\
 +
du=\left( x^{2}+2x+2 \right)^{\prime }\,dx=2\left( x+1 \right)\,dx \\
 +
\end{matrix} \right\} \\
 +
& =\frac{1}{2}\int{\frac{\,du}{u}}=\frac{1}{2}\ln \left| u \right|+C \\
 +
& =\frac{1}{2}\ln \left| x^{2}+2x+2 \right|+C \\
 +
\end{align}</math>
 +
 
 +
NOTE: By completing the square
 +
 
 +
 
 +
<math>x^{2}+2x+2=\left( x+1 \right)^{2}-1^{2}+2=\left( x+1 \right)^{2}+1</math>
 +
 
 +
 
 +
we see that
 +
<math>x^{2}+2x+2</math>
 +
is always greater than or equal to
 +
<math>\text{1}</math>, so we can take away the absolute sign around the argument in
 +
<math>\text{ln}</math>
 +
and answer with
 +
 
 +
 
 +
<math>\frac{1}{2}\ln \left( x^{2}+2x+2 \right)+C</math>

Version vom 10:51, 21. Okt. 2008

Observe that the derivative of the denominator is, for the most part, equal to the numerator,


\displaystyle \left( x^{2}+2x+2 \right)^{\prime }=2x+2=2\left( x+1 \right)


so we can rewrite the integral as


\displaystyle \int{\frac{\frac{1}{2}}{x^{2}+2x+2}}\centerdot \left( x^{2}+2x+2 \right)^{\prime }\,dx


The substitution \displaystyle u=x^{2}+2x+2 will therefore simplify the integral considerably:


\displaystyle \begin{align} & \int{\frac{x+1}{x^{2}+2x+2}}\,dx=\left\{ \begin{matrix} u=x^{2}+2x+2 \\ du=\left( x^{2}+2x+2 \right)^{\prime }\,dx=2\left( x+1 \right)\,dx \\ \end{matrix} \right\} \\ & =\frac{1}{2}\int{\frac{\,du}{u}}=\frac{1}{2}\ln \left| u \right|+C \\ & =\frac{1}{2}\ln \left| x^{2}+2x+2 \right|+C \\ \end{align}

NOTE: By completing the square


\displaystyle x^{2}+2x+2=\left( x+1 \right)^{2}-1^{2}+2=\left( x+1 \right)^{2}+1


we see that \displaystyle x^{2}+2x+2 is always greater than or equal to \displaystyle \text{1}, so we can take away the absolute sign around the argument in \displaystyle \text{ln} and answer with


\displaystyle \frac{1}{2}\ln \left( x^{2}+2x+2 \right)+C