Lösung 2.2:3d
Aus Online Mathematik Brückenkurs 2
K (Lösning 2.2:3d moved to Solution 2.2:3d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | Observe that the derivative of the denominator is, for the most part, equal to the numerator, |
- | < | + | |
- | {{ | + | |
+ | <math>\left( x^{2}+2x+2 \right)^{\prime }=2x+2=2\left( x+1 \right)</math> | ||
+ | |||
+ | |||
+ | so we can rewrite the integral as | ||
+ | |||
+ | |||
+ | <math>\int{\frac{\frac{1}{2}}{x^{2}+2x+2}}\centerdot \left( x^{2}+2x+2 \right)^{\prime }\,dx</math> | ||
+ | |||
+ | |||
+ | The substitution | ||
+ | <math>u=x^{2}+2x+2</math> | ||
+ | will therefore simplify the integral considerably: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \int{\frac{x+1}{x^{2}+2x+2}}\,dx=\left\{ \begin{matrix} | ||
+ | u=x^{2}+2x+2 \\ | ||
+ | du=\left( x^{2}+2x+2 \right)^{\prime }\,dx=2\left( x+1 \right)\,dx \\ | ||
+ | \end{matrix} \right\} \\ | ||
+ | & =\frac{1}{2}\int{\frac{\,du}{u}}=\frac{1}{2}\ln \left| u \right|+C \\ | ||
+ | & =\frac{1}{2}\ln \left| x^{2}+2x+2 \right|+C \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | NOTE: By completing the square | ||
+ | |||
+ | |||
+ | <math>x^{2}+2x+2=\left( x+1 \right)^{2}-1^{2}+2=\left( x+1 \right)^{2}+1</math> | ||
+ | |||
+ | |||
+ | we see that | ||
+ | <math>x^{2}+2x+2</math> | ||
+ | is always greater than or equal to | ||
+ | <math>\text{1}</math>, so we can take away the absolute sign around the argument in | ||
+ | <math>\text{ln}</math> | ||
+ | and answer with | ||
+ | |||
+ | |||
+ | <math>\frac{1}{2}\ln \left( x^{2}+2x+2 \right)+C</math> |
Version vom 10:51, 21. Okt. 2008
Observe that the derivative of the denominator is, for the most part, equal to the numerator,
\displaystyle \left( x^{2}+2x+2 \right)^{\prime }=2x+2=2\left( x+1 \right)
so we can rewrite the integral as
\displaystyle \int{\frac{\frac{1}{2}}{x^{2}+2x+2}}\centerdot \left( x^{2}+2x+2 \right)^{\prime }\,dx
The substitution
\displaystyle u=x^{2}+2x+2
will therefore simplify the integral considerably:
\displaystyle \begin{align}
& \int{\frac{x+1}{x^{2}+2x+2}}\,dx=\left\{ \begin{matrix}
u=x^{2}+2x+2 \\
du=\left( x^{2}+2x+2 \right)^{\prime }\,dx=2\left( x+1 \right)\,dx \\
\end{matrix} \right\} \\
& =\frac{1}{2}\int{\frac{\,du}{u}}=\frac{1}{2}\ln \left| u \right|+C \\
& =\frac{1}{2}\ln \left| x^{2}+2x+2 \right|+C \\
\end{align}
NOTE: By completing the square
\displaystyle x^{2}+2x+2=\left( x+1 \right)^{2}-1^{2}+2=\left( x+1 \right)^{2}+1
we see that
\displaystyle x^{2}+2x+2
is always greater than or equal to
\displaystyle \text{1}, so we can take away the absolute sign around the argument in
\displaystyle \text{ln}
and answer with
\displaystyle \frac{1}{2}\ln \left( x^{2}+2x+2 \right)+C