Lösung 2.2:1c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 2.2:1c moved to Solution 2.2:1c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | With the given variable substitution, |
- | < | + | <math>u=x^{3}</math> |
- | {{ | + | we obtain |
+ | |||
+ | |||
+ | <math>du=\left( x^{3} \right)^{\prime }\,dx=3x^{2}\,dx</math> | ||
+ | |||
+ | |||
+ | and because the integral contains | ||
+ | <math>x^{2}</math> | ||
+ | as a factor, we can bundle it together with | ||
+ | <math>dx</math> | ||
+ | and replace the combination with | ||
+ | <math>\frac{1}{3}\,du</math>, | ||
+ | |||
+ | |||
+ | <math>\int{e^{x^{3}}x^{2}\,dx=\left\{ u=x^{3} \right\}}=\int{e^{u}}\frac{1}{3}\,du=\frac{1}{3}e^{u}+C</math> | ||
+ | |||
+ | |||
+ | Thus, the answer is | ||
+ | |||
+ | |||
+ | <math>\int{e^{x^{3}}x^{2}\,dx=}\frac{1}{3}e^{x^{3}}+C</math> | ||
+ | |||
+ | |||
+ | where | ||
+ | <math>C</math> | ||
+ | is an arbitrary constant. |
Version vom 09:55, 19. Okt. 2008
With the given variable substitution, \displaystyle u=x^{3} we obtain
\displaystyle du=\left( x^{3} \right)^{\prime }\,dx=3x^{2}\,dx
and because the integral contains
\displaystyle x^{2}
as a factor, we can bundle it together with
\displaystyle dx
and replace the combination with
\displaystyle \frac{1}{3}\,du,
\displaystyle \int{e^{x^{3}}x^{2}\,dx=\left\{ u=x^{3} \right\}}=\int{e^{u}}\frac{1}{3}\,du=\frac{1}{3}e^{u}+C
Thus, the answer is
\displaystyle \int{e^{x^{3}}x^{2}\,dx=}\frac{1}{3}e^{x^{3}}+C
where
\displaystyle C
is an arbitrary constant.