Lösung 2.1:5a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.1:5a moved to Solution 2.1:5a: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
(HINT: multiply the top and bottom by the conjugate of the denominator.)
-
<center> [[Image:2_1_5a-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
If we multiply top and bottom of the fraction by the conjugate expression,
-
{{NAVCONTENT_START}}
+
<math>\sqrt{x+9}+\sqrt{x}</math>, then the conjugate rule gives that denominator's root is squared away:
-
<center> [[Image:2_1_5a-2(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\begin{align}
 +
& \frac{1}{\sqrt{x+9}-\sqrt{x}}=\frac{1}{\sqrt{x+9}-\sqrt{x}}\centerdot \frac{\sqrt{x+9}+\sqrt{x}}{\sqrt{x+9}+\sqrt{x}} \\
 +
& =\frac{\sqrt{x+9}+\sqrt{x}}{\left( \sqrt{x+9} \right)^{2}-\left( \sqrt{x} \right)^{2}} \\
 +
& =\frac{\sqrt{x+9}+\sqrt{x}}{x+9-x} \\
 +
& =\frac{\sqrt{x+9}+\sqrt{x}}{9} \\
 +
\end{align}</math>
 +
 
 +
 
 +
Thus,
 +
 
 +
 
 +
<math>\int{\frac{\,dx}{\sqrt{x+9}-\sqrt{x}}}=\frac{1}{9}\int{\left( \sqrt{x+9}+\sqrt{x} \right)}\,dx</math>
 +
 
 +
 
 +
If we write the square roots in power form,
 +
 
 +
 
 +
<math>\frac{1}{9}\int{\left( \left( x+9 \right)^{\frac{1}{2}}+x^{\frac{1}{2}} \right)}\,dx</math>,
 +
 
 +
we see that we have a standard integral and can write down the primitive functions directly:
 +
 
 +
 
 +
<math>\begin{align}
 +
& \frac{1}{9}\int{\left( \left( x+9 \right)^{\frac{1}{2}}+x^{\frac{1}{2}} \right)}\,dx=\frac{1}{9}\left( \frac{\left( x+9 \right)^{\frac{1}{2}+1}}{\frac{1}{2}+1}+\frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} \right)+C \\
 +
& =\frac{1}{9}\left( \frac{\left( x+9 \right)^{\frac{3}{2}}}{\frac{3}{2}}+\frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right)+C \\
 +
& =\frac{1}{9}\left( \frac{2}{3}\left( x+9 \right)^{\frac{3}{2}}+\frac{2}{3}x^{\frac{3}{2}} \right)+C \\
 +
& =\frac{2}{27}\left( x+9 \right)^{\frac{3}{2}}+\frac{2}{27}x^{\frac{3}{2}}+C \\
 +
& \\
 +
\end{align}</math>,
 +
 
 +
where C is an arbitrary constant.
 +
 
 +
This can also be written with square roots as
 +
 
 +
 
 +
<math>\frac{2}{27}\left( x+9 \right)\sqrt{x+9}+\frac{2}{27}x\sqrt{x}+C</math>
 +
 
 +
 
 +
To be completely certain that we have everything correctly, we differentiate the answer and see if we get back the integrand:
 +
 
 +
 
 +
<math>\begin{align}
 +
& \frac{d}{dx}\left( \frac{2}{27}\left( x+9 \right)^{\frac{3}{2}}+\frac{2}{27}x^{\frac{3}{2}}+C \right) \\
 +
& =\frac{2}{27}\centerdot \frac{3}{2}\left( x+9 \right)^{\frac{3}{2}-1}+\frac{2}{27}\centerdot \frac{3}{2}x^{\frac{3}{2}-1}+0 \\
 +
& =\frac{1}{9}\left( x+9 \right)^{\frac{1}{2}}+\frac{1}{9}x^{\frac{1}{2}} \\
 +
\end{align}</math>

Version vom 13:29, 18. Okt. 2008

(HINT: multiply the top and bottom by the conjugate of the denominator.)

If we multiply top and bottom of the fraction by the conjugate expression, \displaystyle \sqrt{x+9}+\sqrt{x}, then the conjugate rule gives that denominator's root is squared away:


\displaystyle \begin{align} & \frac{1}{\sqrt{x+9}-\sqrt{x}}=\frac{1}{\sqrt{x+9}-\sqrt{x}}\centerdot \frac{\sqrt{x+9}+\sqrt{x}}{\sqrt{x+9}+\sqrt{x}} \\ & =\frac{\sqrt{x+9}+\sqrt{x}}{\left( \sqrt{x+9} \right)^{2}-\left( \sqrt{x} \right)^{2}} \\ & =\frac{\sqrt{x+9}+\sqrt{x}}{x+9-x} \\ & =\frac{\sqrt{x+9}+\sqrt{x}}{9} \\ \end{align}


Thus,


\displaystyle \int{\frac{\,dx}{\sqrt{x+9}-\sqrt{x}}}=\frac{1}{9}\int{\left( \sqrt{x+9}+\sqrt{x} \right)}\,dx


If we write the square roots in power form,


\displaystyle \frac{1}{9}\int{\left( \left( x+9 \right)^{\frac{1}{2}}+x^{\frac{1}{2}} \right)}\,dx,

we see that we have a standard integral and can write down the primitive functions directly:


\displaystyle \begin{align} & \frac{1}{9}\int{\left( \left( x+9 \right)^{\frac{1}{2}}+x^{\frac{1}{2}} \right)}\,dx=\frac{1}{9}\left( \frac{\left( x+9 \right)^{\frac{1}{2}+1}}{\frac{1}{2}+1}+\frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} \right)+C \\ & =\frac{1}{9}\left( \frac{\left( x+9 \right)^{\frac{3}{2}}}{\frac{3}{2}}+\frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right)+C \\ & =\frac{1}{9}\left( \frac{2}{3}\left( x+9 \right)^{\frac{3}{2}}+\frac{2}{3}x^{\frac{3}{2}} \right)+C \\ & =\frac{2}{27}\left( x+9 \right)^{\frac{3}{2}}+\frac{2}{27}x^{\frac{3}{2}}+C \\ & \\ \end{align},

where C is an arbitrary constant.

This can also be written with square roots as


\displaystyle \frac{2}{27}\left( x+9 \right)\sqrt{x+9}+\frac{2}{27}x\sqrt{x}+C


To be completely certain that we have everything correctly, we differentiate the answer and see if we get back the integrand:


\displaystyle \begin{align} & \frac{d}{dx}\left( \frac{2}{27}\left( x+9 \right)^{\frac{3}{2}}+\frac{2}{27}x^{\frac{3}{2}}+C \right) \\ & =\frac{2}{27}\centerdot \frac{3}{2}\left( x+9 \right)^{\frac{3}{2}-1}+\frac{2}{27}\centerdot \frac{3}{2}x^{\frac{3}{2}-1}+0 \\ & =\frac{1}{9}\left( x+9 \right)^{\frac{1}{2}}+\frac{1}{9}x^{\frac{1}{2}} \\ \end{align}