3.3 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (07:52, 2. Sep. 2009) (bearbeiten) (rückgängig)
(Added reference to the tests at the bottom of the page)
 
(Der Versionsvergleich bezieht 2 dazwischen liegende Versionen mit ein.)
Zeile 9: Zeile 9:
===Übung 3.3:1===
===Übung 3.3:1===
<div class="ovning">
<div class="ovning">
-
Bringe folgende komplexe Zahlen in die Form <math>\,a+ib\,</math>, wobei <math>\,a\,</math> und <math>\,b\,</math> reelle Zahlen sind:
+
Bringe folgende komplexe Zahlen in die Form <math>\,a+ib\,</math>, wobei <math>\,a\,</math> und <math>\,b\,</math> reelle Zahlen sind.
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 28: Zeile 28:
===Übung 3.3:2===
===Übung 3.3:2===
<div class="ovning">
<div class="ovning">
-
Löse die Gleichungen
+
Löse die Gleichungen.
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 46: Zeile 46:
===Übung 3.3:3===
===Übung 3.3:3===
<div class="ovning">
<div class="ovning">
-
Egänze folgende Ausdrücke quadratisch
+
Ergänze folgende Ausdrücke quadratisch.
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 62: Zeile 62:
===Übung 3.3:4===
===Übung 3.3:4===
<div class="ovning">
<div class="ovning">
-
Löse die Gleichungen
+
Löse die Gleichungen.
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 78: Zeile 78:
===Übung 3.3:5===
===Übung 3.3:5===
<div class="ovning">
<div class="ovning">
-
Löse die Gleichungen
+
Löse die Gleichungen.
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 94: Zeile 94:
===Übung 3.3:6===
===Übung 3.3:6===
<div class="ovning">
<div class="ovning">
-
Bestimmen Sie die Wurzeln von <math>\,z^2=1+i\,</math> in Polarform und in der Form <math>\,a+ib\,</math>, wo <math>\,a\,</math> und <math>\,b\,</math> reelle Zahlen sind. Verwenden sie das Ergebnis, um <math>\; \tan \frac{\pi}{8}\,</math> zu berechnen.
+
Bestimme die Wurzeln von <math>\,z^2=1+i\,</math> in Polarform und in der Form <math>\,a+ib\,</math>, wobei <math>\,a\,</math> und <math>\,b\,</math> reelle Zahlen sind. Verwenden sie das Ergebnis, um <math>\; \tan \frac{\pi}{8}\,</math> zu berechnen.
</div>{{#NAVCONTENT:Antwort|Antwort 3.3:6|Lösung|Lösung 3.3:6}}
</div>{{#NAVCONTENT:Antwort|Antwort 3.3:6|Lösung|Lösung 3.3:6}}
 +
 +
 +
'''Diagnostische Prüfung und Schlussprüfung'''
 +
 +
Nachdem Du mit der Theorie und den Übungen fertig bist, sollst Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest den Link zu den Prüfungen in Deiner Student Lounge.

Aktuelle Version

       Theorie          Übungen      

Übung 3.3:1

Bringe folgende komplexe Zahlen in die Form \displaystyle \,a+ib\,, wobei \displaystyle \,a\, und \displaystyle \,b\, reelle Zahlen sind.

a) \displaystyle (i+1)^{12} b) \displaystyle \displaystyle\Bigl(\frac{1+i\sqrt{3}}{2}\,\Bigr)^{12}
c) \displaystyle (4\sqrt{3} -4i)^{22} d) \displaystyle \Bigl(\displaystyle\frac{1+i\sqrt{3}}{1+i}\,\Bigr)^{12}
e) \displaystyle \displaystyle\frac{(1+i\sqrt{3}\,)(1-i)^8}{(\sqrt{3}-i)^9}

Übung 3.3:2

Löse die Gleichungen.

a) \displaystyle z^4=1 b) \displaystyle z^3=-1 c) \displaystyle z^5=-1-i
d) \displaystyle (z-1)^4+4=0 e) \displaystyle \displaystyle\Bigl(\frac{z+i}{z-i}\Bigr)^2 = -1

Übung 3.3:3

Ergänze folgende Ausdrücke quadratisch.

a) \displaystyle z^2 +2z+3 b) \displaystyle z^2 +3iz-\frac{1}{4}
c) \displaystyle -z^2-2iz +4z+1 d) \displaystyle iz^2+(2+3i)z-1

Übung 3.3:4

Löse die Gleichungen.

a) \displaystyle z^2=i b) \displaystyle z^2-4z+5=0
c) \displaystyle z^2+2z+3=0 d) \displaystyle \displaystyle\frac{1}{z} + z = \frac{1}{2}

Übung 3.3:5

Löse die Gleichungen.

a) \displaystyle z^2-2(1+i)z+2i-1=0 b) \displaystyle z^2-(2-i)z+(3-i)=0
c) \displaystyle z^2-(1+3i)z-4+3i=0 d) \displaystyle (4+i)z^2+(1-21i)z=17

Übung 3.3:6

Bestimme die Wurzeln von \displaystyle \,z^2=1+i\, in Polarform und in der Form \displaystyle \,a+ib\,, wobei \displaystyle \,a\, und \displaystyle \,b\, reelle Zahlen sind. Verwenden sie das Ergebnis, um \displaystyle \; \tan \frac{\pi}{8}\, zu berechnen.


Diagnostische Prüfung und Schlussprüfung

Nachdem Du mit der Theorie und den Übungen fertig bist, sollst Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest den Link zu den Prüfungen in Deiner Student Lounge.