Lösung 2.2:3e

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (12:45, 27. Aug. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 5 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
If we differentiate the denominator in the integrand
+
Die Ableitung des Nenners ist
 +
{{Abgesetzte Formel||<math>(x^2+1)' = 2x</math>.}}
-
<math>3x=\frac{3}{2}\centerdot 2x=\frac{3}{2}\left( x^{2}+1 \right)^{\prime }</math>
+
Dies entspricht fast dem Zähler. Wir schreiben den Zähler wie
 +
{{Abgesetzte Formel||<math>3x = \frac{3}{2}\cdot 2x = \frac{3}{2}\cdot (x^2+1)',</math>}}
-
we obtain almost the same expression as in the numerator; there is a constant
+
sodass wir das folgende Integral erhalten
-
<math>\text{2}</math>
+
-
which is different. We therefore rewrite the numerator as
+
 +
{{Abgesetzte Formel||<math>\int\frac{\tfrac{3}{2}}{x^2+1}\cdot (x^{2}+1)'\,dx\,</math>.}}
-
<math>3x=\frac{3}{2}\centerdot 2x=\frac{3}{2}\centerdot \left( x^{2}+1 \right)^{\prime }</math>,
+
Wir sehen hier, dass die Substitution <math>u=x^2+1</math> günstig ist.
-
so the integral can be written as
+
{{Abgesetzte Formel||<math>\begin{align}
 +
\int \frac{3x}{x^2+1}\,dx
 +
&= \left\{ \begin{align}
 +
u &= x^2+1\\[5pt]
 +
du &= (x^2+1)'\,dx = 2x\,dx
 +
\end{align}\right\}\\[5pt]
 +
&= \frac{3}{2}\int \frac{du}{u}\\[5pt]
 +
&= \frac{3}{2}\ln |u|+C\\[5pt]
 +
&= \frac{3}{2}\ln |x^{2}+1|+C\\[5pt]
 +
&= \frac{3}{2}\ln (x^{2}+1) + C
 +
\end{align}</math>}}
-
 
+
Im letzten Schritt haben wir das Betragszeichen weggelassen, da <math>x^2+1</math> immer positiv ist.
-
<math>\int{\frac{\frac{3}{2}}{x^{2}+1}}\centerdot \left( x^{2}+1 \right)^{\prime }\,dx</math>,
+
-
 
+
-
and we see that the substitution
+
-
<math>u=x^{2}+1</math>
+
-
can be used to simplify the integral:
+
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& \int{\frac{3x}{x^{2}+1}}\,dx=\left\{ \begin{matrix}
+
-
u=x^{2}+1 \\
+
-
du=\left( x^{2}+1 \right)^{\prime }\,dx=2x\,dx \\
+
-
\end{matrix} \right\} \\
+
-
& =\frac{3}{2}\int{\frac{\,du}{u}}=\frac{3}{2}\ln \left| u \right|+C \\
+
-
& =\frac{3}{2}\ln \left| x^{2}+1 \right|+C \\
+
-
& =\frac{3}{2}\ln \left( x^{2}+1 \right)+C \\
+
-
\end{align}</math>
+
-
 
+
-
 
+
-
In the last step, we take away the absolute sign around the argument in
+
-
<math>\ln </math>, because
+
-
<math>x^{2}+1</math>
+
-
is always greater than or equal to
+
-
<math>\text{1}</math>.
+

Aktuelle Version

Die Ableitung des Nenners ist

\displaystyle (x^2+1)' = 2x.

Dies entspricht fast dem Zähler. Wir schreiben den Zähler wie

\displaystyle 3x = \frac{3}{2}\cdot 2x = \frac{3}{2}\cdot (x^2+1)',

sodass wir das folgende Integral erhalten

\displaystyle \int\frac{\tfrac{3}{2}}{x^2+1}\cdot (x^{2}+1)'\,dx\,.

Wir sehen hier, dass die Substitution \displaystyle u=x^2+1 günstig ist.

\displaystyle \begin{align}

\int \frac{3x}{x^2+1}\,dx &= \left\{ \begin{align} u &= x^2+1\\[5pt] du &= (x^2+1)'\,dx = 2x\,dx \end{align}\right\}\\[5pt] &= \frac{3}{2}\int \frac{du}{u}\\[5pt] &= \frac{3}{2}\ln |u|+C\\[5pt] &= \frac{3}{2}\ln |x^{2}+1|+C\\[5pt] &= \frac{3}{2}\ln (x^{2}+1) + C \end{align}

Im letzten Schritt haben wir das Betragszeichen weggelassen, da \displaystyle x^2+1 immer positiv ist.