2.1 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (15:01, 10. Aug. 2010) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 40 dazwischen liegende Versionen mit ein.)
Zeile 2: Zeile 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Mall:Ej vald flik|[[2.1 Inledning|Teori]]}}
+
{{Nicht gewählter Tab|[[2.1 Einführung zur Integralrechnung|Theorie]]}}
-
{{Mall:Vald flik|[[2.1 Övningar|Övningar]]}}
+
{{Gewählter Tab|[[2.1 Übungen|Übungen]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
-
===Övning 2.1:1===
+
===Übung 2.1:1===
<div class="ovning">
<div class="ovning">
-
Tolka integralerna som areor och bestäm deras värde
+
Interpretiere folgende Integrale als eine Fläche und berechne die Integrale.
 +
 
 +
{| width="100%" cellspacing="10px"
|a)
|a)
|width="50%"|<math>\displaystyle\int_{-1}^{2} 2\, dx</math>
|width="50%"|<math>\displaystyle\int_{-1}^{2} 2\, dx</math>
Zeile 20: Zeile 22:
|width="50%"| <math>\displaystyle\int_{-1}^{2}|x| \, dx</math>
|width="50%"| <math>\displaystyle\int_{-1}^{2}|x| \, dx</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.1:1|Lösning a|Lösning 2.1:1a|Lösning b|Lösning 2.1:1b|Lösning c|Lösning 2.1:1c|Lösning d|Lösning 2.1:1d}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 2.1:1|Lösung a|Lösung 2.1:1a|Lösung b|Lösung 2.1:1b|Lösung c|Lösung 2.1:1c|Lösung d|Lösung 2.1:1d}}
 +
 
 +
===Übung 2.1:2===
 +
<div class="ovning">
 +
Berechne die Integrale.
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="50%"|<math>\displaystyle\int_{0}^{2} (x^2+3x^3)\, dx</math>
 +
|b)
 +
|width="50%"| <math>\displaystyle\int_{-1}^{2} (x-2)(x+1)\, dx</math>
 +
|-
 +
|c)
 +
|width="50%"| <math> \displaystyle\int_{4}^{9} \left(\sqrt{x} - \displaystyle\frac{1}{\sqrt{x}}\right)\, dx</math>
 +
|d)
 +
|width="50%"| <math>\displaystyle\int_{1}^{4} \displaystyle\frac{\sqrt{x}}{x^2}\, dx</math>
 +
|}
 +
</div>{{#NAVCONTENT:Antwort|Antwort 2.1:2|Lösung a|Lösung 2.1:2a|Lösung b|Lösung 2.1:2b|Lösung c|Lösung 2.1:2c|Lösung d|Lösung 2.1:2d}}
 +
 
 +
===Übung 2.1:3===
 +
<div class="ovning">
 +
Berechne die Integrale.
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="50%"|<math>\displaystyle\int \sin x\, dx</math>
 +
|b)
 +
|width="50%"| <math>\displaystyle\int 2\sin x \cos x\, dx</math>
 +
|-
 +
|c)
 +
|width="50%"| <math> \displaystyle\int e^{2x}(e^x+1)\, dx</math>
 +
|d)
 +
|width="50%"| <math>\displaystyle\int \displaystyle\frac{x^2+1}{x}\, dx</math>
 +
|}
 +
</div>{{#NAVCONTENT:Antwort|Antwort 2.1:3|Lösung a|Lösung 2.1:3a|Lösung b|Lösung 2.1:3b|Lösung c|Lösung 2.1:3c|Lösung d|Lösung 2.1:3d}}
 +
 
 +
===Übung 2.1:4===
 +
<div class="ovning">
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="100%"| Berechne die Fläche zwischen <math>y=\sin x</math> und der <math>x</math>-Achse für <math>0\le x \le \frac{5\pi}{4}</math>.
 +
|-
 +
|b)
 +
|width="100%"| Berechne die Fläche zwischen der Funktion <math>y=-x^2+2x+2</math> und der <math>x</math>-Achse.
 +
|-
 +
|c)
 +
|width="100%"| Berechne die Fläche des endlichen Gebietes zwischen den Funktionen <math> y=\frac{1}{4}x^2+2</math> und <math>y=8-\frac{1}{8}x^2 \,.</math>
 +
|-
 +
|d)
 +
|width="100%"| Berechne die Fläche des Gebietes zwischen den Funktionen <math> y=x+2, y=1 </math> und <math> y=\frac{1}{x}</math>.
 +
|-
 +
|e)
 +
|width="100%"| Berechne die Fläche des Gebietes, das durch die Ungleichung <math>x^2\le y\le x+2</math> definiert ist.
 +
|}
 +
</div>{{#NAVCONTENT:Antwort|Antwort 2.1:4|Lösung a|Lösung 2.1:4a|Lösung b|Lösung 2.1:4b|Lösung c|Lösung 2.1:4c|Lösung d|Lösung 2.1:4d|Lösung e|Lösung 2.1:4e}}
 +
 
 +
===Übung 2.1:5===
 +
<div class="ovning">
 +
Berechne das Integral.
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="100%"| <math>\displaystyle \int \displaystyle\frac{dx}{\sqrt{x+9}-\sqrt{x}}\quad</math> (Hinweis: erweitere den Bruch, so dass der Nenner keine Wurzeln mehr enthält)
 +
|-
 +
|b)
 +
|width="100%"| <math>\displaystyle \int \sin^2 x\ dx\quad</math> (Hinweis: schreibe den Integrand mit einer trigonometrischen Identität um)
 +
|}
 +
</div>{{#NAVCONTENT:Antwort|Antwort 2.1:5|Lösung a|Lösung 2.1:5a|Lösung b|Lösung 2.1:5b}}
 +
 
 +
 
 +
'''Diagnostische Prüfung und Schlussprüfung'''
 +
 
 +
Nachdem Du mit der Theorie und den Übungen fertig bist, sollst Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest den Link zu den Prüfungen in Deiner Student Lounge.

Aktuelle Version

       Theorie          Übungen      

Übung 2.1:1

Interpretiere folgende Integrale als eine Fläche und berechne die Integrale.

a) \displaystyle \displaystyle\int_{-1}^{2} 2\, dx b) \displaystyle \displaystyle\int_{0}^{1} (2x+1)\, dx
c) \displaystyle \displaystyle \int_{0}^{2} (3-2x)\, dx d) \displaystyle \displaystyle\int_{-1}^{2}|x| \, dx

Übung 2.1:2

Berechne die Integrale.

a) \displaystyle \displaystyle\int_{0}^{2} (x^2+3x^3)\, dx b) \displaystyle \displaystyle\int_{-1}^{2} (x-2)(x+1)\, dx
c) \displaystyle \displaystyle\int_{4}^{9} \left(\sqrt{x} - \displaystyle\frac{1}{\sqrt{x}}\right)\, dx d) \displaystyle \displaystyle\int_{1}^{4} \displaystyle\frac{\sqrt{x}}{x^2}\, dx

Übung 2.1:3

Berechne die Integrale.

a) \displaystyle \displaystyle\int \sin x\, dx b) \displaystyle \displaystyle\int 2\sin x \cos x\, dx
c) \displaystyle \displaystyle\int e^{2x}(e^x+1)\, dx d) \displaystyle \displaystyle\int \displaystyle\frac{x^2+1}{x}\, dx

Übung 2.1:4

a) Berechne die Fläche zwischen \displaystyle y=\sin x und der \displaystyle x-Achse für \displaystyle 0\le x \le \frac{5\pi}{4}.
b) Berechne die Fläche zwischen der Funktion \displaystyle y=-x^2+2x+2 und der \displaystyle x-Achse.
c) Berechne die Fläche des endlichen Gebietes zwischen den Funktionen \displaystyle y=\frac{1}{4}x^2+2 und \displaystyle y=8-\frac{1}{8}x^2 \,.
d) Berechne die Fläche des Gebietes zwischen den Funktionen \displaystyle y=x+2, y=1 und \displaystyle y=\frac{1}{x}.
e) Berechne die Fläche des Gebietes, das durch die Ungleichung \displaystyle x^2\le y\le x+2 definiert ist.

Übung 2.1:5

Berechne das Integral.

a) \displaystyle \displaystyle \int \displaystyle\frac{dx}{\sqrt{x+9}-\sqrt{x}}\quad (Hinweis: erweitere den Bruch, so dass der Nenner keine Wurzeln mehr enthält)
b) \displaystyle \displaystyle \int \sin^2 x\ dx\quad (Hinweis: schreibe den Integrand mit einer trigonometrischen Identität um)


Diagnostische Prüfung und Schlussprüfung

Nachdem Du mit der Theorie und den Übungen fertig bist, sollst Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest den Link zu den Prüfungen in Deiner Student Lounge.