1.1:2d alternative d
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
(Die Seite wurde neu angelegt: <math>\begin{align}f'(x)=\lim_{h \to 0}\frac{f(x+h)-f(x)}{h} & wobei f(x)=\sqrt{x}\\ f'(x)&=\lim_{h \to 0}\frac{\sqrt{x+h}-\sqrt{x}}{h}\\ &=\lim_{h \to 0}\frac{(\sqrt...) |
|||
(Der Versionsvergleich bezieht eine dazwischen liegende Version mit ein.) | |||
Zeile 1: | Zeile 1: | ||
+ | Wir benutzen die Definition der Ableitung als Grenzwert (mit h gegen Null) im Theorie-Teil dieses Kurses im Abschnitt 1.1 B : | ||
+ | |||
<math>\begin{align}f'(x)=\lim_{h \to 0}\frac{f(x+h)-f(x)}{h} | <math>\begin{align}f'(x)=\lim_{h \to 0}\frac{f(x+h)-f(x)}{h} | ||
- | & wobei f(x)=\sqrt{x}\\ | + | & wobei \ f(x)=\sqrt{x}\\ |
f'(x)&=\lim_{h \to 0}\frac{\sqrt{x+h}-\sqrt{x}}{h}\\ | f'(x)&=\lim_{h \to 0}\frac{\sqrt{x+h}-\sqrt{x}}{h}\\ | ||
- | &=\lim_{h \ | + | &=\lim_{h \to0}\frac{(\sqrt{x+h}-\sqrt{x})(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})}\\ |
- | &=\lim_{h \to 0}\frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})}\\ | + | & (binomische \ Formel :(a+b)(a-b)=a^{2}-b^{2})\\ |
+ | &=\lim_{h \to 0}\frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})}\\ | ||
&=\lim_{h \to 0}\frac{h}{h(\sqrt{x+h}+\sqrt{x})}\\ | &=\lim_{h \to 0}\frac{h}{h(\sqrt{x+h}+\sqrt{x})}\\ | ||
&=\lim_{h \to 0}\frac{1}{\sqrt{x+h}+\sqrt{x}}\\ | &=\lim_{h \to 0}\frac{1}{\sqrt{x+h}+\sqrt{x}}\\ | ||
&=\frac{1}{\sqrt{x}+\sqrt{x}}=\frac{1}{2\sqrt{x}}\\ | &=\frac{1}{\sqrt{x}+\sqrt{x}}=\frac{1}{2\sqrt{x}}\\ | ||
\end{align}</math> | \end{align}</math> |
Aktuelle Version
Wir benutzen die Definition der Ableitung als Grenzwert (mit h gegen Null) im Theorie-Teil dieses Kurses im Abschnitt 1.1 B :
\displaystyle \begin{align}f'(x)=\lim_{h \to 0}\frac{f(x+h)-f(x)}{h} & wobei \ f(x)=\sqrt{x}\\ f'(x)&=\lim_{h \to 0}\frac{\sqrt{x+h}-\sqrt{x}}{h}\\ &=\lim_{h \to0}\frac{(\sqrt{x+h}-\sqrt{x})(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})}\\ & (binomische \ Formel :(a+b)(a-b)=a^{2}-b^{2})\\ &=\lim_{h \to 0}\frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})}\\ &=\lim_{h \to 0}\frac{h}{h(\sqrt{x+h}+\sqrt{x})}\\ &=\lim_{h \to 0}\frac{1}{\sqrt{x+h}+\sqrt{x}}\\ &=\frac{1}{\sqrt{x}+\sqrt{x}}=\frac{1}{2\sqrt{x}}\\ \end{align}