1.1:2a alternativ 1
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
Zeile 1: | Zeile 1: | ||
+ | Wir benutzen die Definiton der Ableitung im Theorie-Teil dieses Kurses im Abschnitt 1.1 B : | ||
+ | |||
<math>f'(x)=\lim_{h \to 0}\frac{f(x+h)-f(x)}{h}</math> wobei <math>f(x)=x^2-3x+1</math> | <math>f'(x)=\lim_{h \to 0}\frac{f(x+h)-f(x)}{h}</math> wobei <math>f(x)=x^2-3x+1</math> | ||
<math>\begin{align} | <math>\begin{align} | ||
Zeile 4: | Zeile 6: | ||
&=\lim_{h \to 0}\frac{x^{2}+2hx+h^{2}-3x-3h+1-x^{2}+3x+1}{h}\\ | &=\lim_{h \to 0}\frac{x^{2}+2hx+h^{2}-3x-3h+1-x^{2}+3x+1}{h}\\ | ||
&=\lim_{h \to 0}\frac{2hx+h^{2}-3h}{h}\\ | &=\lim_{h \to 0}\frac{2hx+h^{2}-3h}{h}\\ | ||
+ | &=\lim_{h \to 0}\frac{h(2x+h-3)}{h}\\ | ||
&=\lim_{h \to 0}2x+h-3\\ | &=\lim_{h \to 0}2x+h-3\\ | ||
+ | &=2x-3+\lim_{h \to 0}h\\ | ||
&=2x-3\end{align}</math> | &=2x-3\end{align}</math> | ||
+ | |||
+ | (2x-3 ist von h und dem Limes unabhängig und <math> \lim_{h \to 0}h =0</math>) |
Version vom 13:22, 7. Sep. 2009
Wir benutzen die Definiton der Ableitung im Theorie-Teil dieses Kurses im Abschnitt 1.1 B :
\displaystyle f'(x)=\lim_{h \to 0}\frac{f(x+h)-f(x)}{h} wobei \displaystyle f(x)=x^2-3x+1 \displaystyle \begin{align} f'(x)&=\lim_{h \to 0}\frac{(x+h)^{2}-3(x+h)+1-(x^{2}-3x+1)}{h}\\ &=\lim_{h \to 0}\frac{x^{2}+2hx+h^{2}-3x-3h+1-x^{2}+3x+1}{h}\\ &=\lim_{h \to 0}\frac{2hx+h^{2}-3h}{h}\\ &=\lim_{h \to 0}\frac{h(2x+h-3)}{h}\\ &=\lim_{h \to 0}2x+h-3\\ &=2x-3+\lim_{h \to 0}h\\ &=2x-3\end{align}
(2x-3 ist von h und dem Limes unabhängig und \displaystyle \lim_{h \to 0}h =0)