1.1:2a alternativ 1

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Zeile 1: Zeile 1:
 +
Wir benutzen die Definiton der Ableitung im Theorie-Teil dieses Kurses im Abschnitt 1.1 B :
 +
<math>f'(x)=\lim_{h \to 0}\frac{f(x+h)-f(x)}{h}</math> wobei <math>f(x)=x^2-3x+1</math>
<math>f'(x)=\lim_{h \to 0}\frac{f(x+h)-f(x)}{h}</math> wobei <math>f(x)=x^2-3x+1</math>
<math>\begin{align}
<math>\begin{align}
Zeile 4: Zeile 6:
&=\lim_{h \to 0}\frac{x^{2}+2hx+h^{2}-3x-3h+1-x^{2}+3x+1}{h}\\
&=\lim_{h \to 0}\frac{x^{2}+2hx+h^{2}-3x-3h+1-x^{2}+3x+1}{h}\\
&=\lim_{h \to 0}\frac{2hx+h^{2}-3h}{h}\\
&=\lim_{h \to 0}\frac{2hx+h^{2}-3h}{h}\\
 +
&=\lim_{h \to 0}\frac{h(2x+h-3)}{h}\\
&=\lim_{h \to 0}2x+h-3\\
&=\lim_{h \to 0}2x+h-3\\
 +
&=2x-3+\lim_{h \to 0}h\\
&=2x-3\end{align}</math>
&=2x-3\end{align}</math>
 +
 +
(2x-3 ist von h und dem Limes unabhängig und <math> \lim_{h \to 0}h =0</math>)

Version vom 13:22, 7. Sep. 2009

Wir benutzen die Definiton der Ableitung im Theorie-Teil dieses Kurses im Abschnitt 1.1 B :

\displaystyle f'(x)=\lim_{h \to 0}\frac{f(x+h)-f(x)}{h} wobei \displaystyle f(x)=x^2-3x+1 \displaystyle \begin{align} f'(x)&=\lim_{h \to 0}\frac{(x+h)^{2}-3(x+h)+1-(x^{2}-3x+1)}{h}\\ &=\lim_{h \to 0}\frac{x^{2}+2hx+h^{2}-3x-3h+1-x^{2}+3x+1}{h}\\ &=\lim_{h \to 0}\frac{2hx+h^{2}-3h}{h}\\ &=\lim_{h \to 0}\frac{h(2x+h-3)}{h}\\ &=\lim_{h \to 0}2x+h-3\\ &=2x-3+\lim_{h \to 0}h\\ &=2x-3\end{align}

(2x-3 ist von h und dem Limes unabhängig und \displaystyle \lim_{h \to 0}h =0)