Lösung 3.4:7a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
K (Solution 3.4:7a moved to Lösung 3.4:7a: Robot: moved page)

Version vom 10:53, 11. Mär. 2009

There exists a simple relation between a zero and the polynomial's factorization: \displaystyle z=a is a zero if and only if the polynomial contains the factor \displaystyle (z-a). (This is the meaning of the factor theorem.)

If we are to have a polynomial with zeros at \displaystyle 1, \displaystyle 2 and \displaystyle 4, the polynomial must therefore contain the factors \displaystyle (z-1), \displaystyle (z-2) and \displaystyle (z-4). For example,

\displaystyle (z-1)(z-2)(z-4) = z^3-7z^2+14z-8\,\textrm{.}


Note: It is possible to multiply the polynomial above by a non-zero constant and get another third-degree polynomial with the same roots.