Lösung 3.4:7a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 3: Zeile 3:
If we are to have a polynomial with zeros at <math>1</math>, <math>2</math> and <math>4</math>, the polynomial must therefore contain the factors <math>(z-1)</math>, <math>(z-2)</math> and <math>(z-4)</math>. For example,
If we are to have a polynomial with zeros at <math>1</math>, <math>2</math> and <math>4</math>, the polynomial must therefore contain the factors <math>(z-1)</math>, <math>(z-2)</math> and <math>(z-4)</math>. For example,
-
{{Displayed math||<math>(z-1)(z-2)(z-4) = z^3-7z^2+14z-8\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>(z-1)(z-2)(z-4) = z^3-7z^2+14z-8\,\textrm{.}</math>}}
Note: It is possible to multiply the polynomial above by a non-zero constant and get another third-degree polynomial with the same roots.
Note: It is possible to multiply the polynomial above by a non-zero constant and get another third-degree polynomial with the same roots.

Version vom 13:16, 10. Mär. 2009

There exists a simple relation between a zero and the polynomial's factorization: \displaystyle z=a is a zero if and only if the polynomial contains the factor \displaystyle (z-a). (This is the meaning of the factor theorem.)

If we are to have a polynomial with zeros at \displaystyle 1, \displaystyle 2 and \displaystyle 4, the polynomial must therefore contain the factors \displaystyle (z-1), \displaystyle (z-2) and \displaystyle (z-4). For example,

\displaystyle (z-1)(z-2)(z-4) = z^3-7z^2+14z-8\,\textrm{.}


Note: It is possible to multiply the polynomial above by a non-zero constant and get another third-degree polynomial with the same roots.