Lösung 3.2:6b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
If we determine the number's magnitude <math>r</math> and argument <math>\alpha </math>, we can write its polar form using the formula
If we determine the number's magnitude <math>r</math> and argument <math>\alpha </math>, we can write its polar form using the formula
-
{{Displayed math||<math>r(\cos\alpha + i\sin\alpha)\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>r(\cos\alpha + i\sin\alpha)\,\textrm{.}</math>}}
Because the number lies on the imaginary axis, it is possible to write its magnitude and argument directly.
Because the number lies on the imaginary axis, it is possible to write its magnitude and argument directly.
Zeile 9: Zeile 9:
The polar form is
The polar form is
-
{{Displayed math||<math>11\Bigl(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}\Bigr)\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>11\Bigl(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}\Bigr)\,\textrm{.}</math>}}

Version vom 13:09, 10. Mär. 2009

If we determine the number's magnitude \displaystyle r and argument \displaystyle \alpha , we can write its polar form using the formula

\displaystyle r(\cos\alpha + i\sin\alpha)\,\textrm{.}

Because the number lies on the imaginary axis, it is possible to write its magnitude and argument directly.

The polar form is

\displaystyle 11\Bigl(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}\Bigr)\,\textrm{.}