Lösung 1.2:2c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel)) | ||
| Zeile 1: | Zeile 1: | ||
| When we see this expression, we should think "square root of something", | When we see this expression, we should think "square root of something", | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\sqrt{\bbox[#FFEEAA;,1.5pt]{\phantom{\cos x}}}\,\textrm{,}</math>}} | 
| and in order to differentiate it, we should first differentiate the outer function , "the square root of", with respect to its argument and, after that, multiply by the derivative of the inner functional expression <math>\bbox[#FFEEAA;,1.5pt]{\phantom{\cos x}} = \cos x</math>, | and in order to differentiate it, we should first differentiate the outer function , "the square root of", with respect to its argument and, after that, multiply by the derivative of the inner functional expression <math>\bbox[#FFEEAA;,1.5pt]{\phantom{\cos x}} = \cos x</math>, | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\frac{d}{dx}\,\sqrt{\bbox[#FFEEAA;,1.5pt]{\cos x}} = \frac{1}{2\sqrt{\bbox[#FFEEAA;,1.5pt]{\cos x}}}\cdot \bigl(\bbox[#FFEEAA;,1.5pt]{\cos x}\bigr)'\,,</math>}} | 
| where we have used the differentiation rule  | where we have used the differentiation rule  | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\frac{d}{dx}\,\sqrt{x} = \frac{d}{dx}\,x^{1/2} = \tfrac{1}{2}x^{1/2-1} = \tfrac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}\,\textrm{.}</math>}} | 
| Thus, we obtain | Thus, we obtain | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\frac{d}{dx}\,\sqrt{\cos x} = \frac{1}{2\sqrt{\cos x}}\cdot (-\sin x) = -\frac{\sin x}{2\sqrt{\cos x}}\,\textrm{.}</math>}} | 
Version vom 12:53, 10. Mär. 2009
When we see this expression, we should think "square root of something",
| \displaystyle \sqrt{\bbox[#FFEEAA;,1.5pt]{\phantom{\cos x}}}\,\textrm{,} | 
and in order to differentiate it, we should first differentiate the outer function , "the square root of", with respect to its argument and, after that, multiply by the derivative of the inner functional expression \displaystyle \bbox[#FFEEAA;,1.5pt]{\phantom{\cos x}} = \cos x,
| \displaystyle \frac{d}{dx}\,\sqrt{\bbox[#FFEEAA;,1.5pt]{\cos x}} = \frac{1}{2\sqrt{\bbox[#FFEEAA;,1.5pt]{\cos x}}}\cdot \bigl(\bbox[#FFEEAA;,1.5pt]{\cos x}\bigr)'\,, | 
where we have used the differentiation rule
| \displaystyle \frac{d}{dx}\,\sqrt{x} = \frac{d}{dx}\,x^{1/2} = \tfrac{1}{2}x^{1/2-1} = \tfrac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}\,\textrm{.} | 
Thus, we obtain
| \displaystyle \frac{d}{dx}\,\sqrt{\cos x} = \frac{1}{2\sqrt{\cos x}}\cdot (-\sin x) = -\frac{\sin x}{2\sqrt{\cos x}}\,\textrm{.} | 
 
		  