Lösung 3.4:1d
Aus Online Mathematik Brückenkurs 2
| K  | |||
| Zeile 1: | Zeile 1: | ||
| - | We start by adding and taking away  | + | We start by adding and taking away <math>x^2</math> in the numerator, so that, in combination with <math>x^3</math>, we obtain the expression <math>x^3+x^2 = x^2(x+1)</math> which can be simplified with the denominator <math>x+1</math>, | 
| - | <math>x^ | + | |
| - | in the numerator, so that, in combination with  | + | |
| - | <math>x^ | + | |
| - | <math>x^ | + | |
| - | which can be simplified with the denominator  | + | |
| - | <math>x+1</math>, | + | |
| + | {{Displayed math||<math>\begin{align} | ||
| + | \frac{x^3+x+2}{x+1} | ||
| + | &= \frac{x^3+x^2-x^2+x+2}{x+1}\\[5pt] | ||
| + | &= \frac{x^3+x^2}{x+1} + \frac{-x^2+x+2}{x+1}\\[5pt] | ||
| + | &= \frac{x^2(x+1)}{x+1} + \frac{-x^2+x+2}{x+1}\\[5pt] | ||
| + | &= x^2 + \frac{-x^2+x+2}{x+1}\,\textrm{.}  | ||
| + | \end{align}</math>}} | ||
| - | + | The term <math>-x^2</math> in the remaining quotient needs to complemented with  | |
| - | + | <math>-x</math> so that we get <math>-x^2-x = -x(x+1)</math>, which is divisible by  | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | The term  | + | |
| - | <math>-x^ | + | |
| - | in the remaining quotient needs to complemented with  | + | |
| - | <math>-x</math> | + | |
| - | so that we get  | + | |
| - | <math>-x^ | + | |
| <math>x+1</math>, | <math>x+1</math>, | ||
| - | + | {{Displayed math||<math>\begin{align} | |
| - | <math>\begin{align} | + | x^2 + \frac{-x^2+x+2}{x+1} | 
| - | + | &= x^2 + \frac{-x^2-x+x+x+2}{x+1}\\[5pt] | |
| - | & =x^ | + | &= x^2 + \frac{-x^2-x}{x+1} + \frac{2x+2}{x+1}\\[5pt] | 
| - | & =x^ | + | &= x^2 + \frac{-x(x+1)}{x+1} + \frac{2x+2}{x+1}\\[5pt] | 
| - | & =x^ | + | &= x^2 - x + \frac{2x+2}{x+1}\,\textrm{.} | 
| - | \end{align}</math> | + | \end{align}</math>}} | 
| - | + | ||
| The last quotient divides perfectly and we obtain | The last quotient divides perfectly and we obtain | ||
| - | + | {{Displayed math||<math>x^2-x+\frac{2x+2}{x+1}=x^2-x+2\,\textrm{.}</math>}} | |
| - | <math>x^ | + | |
| - | + | ||
| A quick check of whether | A quick check of whether | ||
| - | + | {{Displayed math||<math>\frac{x^3+x+2}{x+1} = x^2-x+2\,\textrm{.}</math>}} | |
| - | <math>\frac{x^ | + | |
| - | + | ||
| is the correct answer is to investigate whether  | is the correct answer is to investigate whether  | ||
| + | {{Displayed math||<math>x^3+x+2 = (x^2-x+2)(x+1)</math>}} | ||
| - | + | holds. If we expand the right-hand side, we see that the relation really does hold | |
| - | + | ||
| - | holds. If we expand the right-hand side, we see that the relation really does hold | + | |
| - | + | ||
| - | <math>\begin{align} | + | {{Displayed math||<math>\begin{align} | 
| - | + | (x^2-x+2)(x+1) = x^3+x^2-x^2-x+2x+2 = x^3+x+2\,\textrm{.}  | |
| - | + | \end{align}</math>}} | |
| - | \end{align}</math> | + | |
Version vom 12:29, 31. Okt. 2008
We start by adding and taking away \displaystyle x^2 in the numerator, so that, in combination with \displaystyle x^3, we obtain the expression \displaystyle x^3+x^2 = x^2(x+1) which can be simplified with the denominator \displaystyle x+1,
| \displaystyle \begin{align} \frac{x^3+x+2}{x+1} &= \frac{x^3+x^2-x^2+x+2}{x+1}\\[5pt] &= \frac{x^3+x^2}{x+1} + \frac{-x^2+x+2}{x+1}\\[5pt] &= \frac{x^2(x+1)}{x+1} + \frac{-x^2+x+2}{x+1}\\[5pt] &= x^2 + \frac{-x^2+x+2}{x+1}\,\textrm{.} \end{align} | 
The term \displaystyle -x^2 in the remaining quotient needs to complemented with \displaystyle -x so that we get \displaystyle -x^2-x = -x(x+1), which is divisible by \displaystyle x+1,
| \displaystyle \begin{align} x^2 + \frac{-x^2+x+2}{x+1} &= x^2 + \frac{-x^2-x+x+x+2}{x+1}\\[5pt] &= x^2 + \frac{-x^2-x}{x+1} + \frac{2x+2}{x+1}\\[5pt] &= x^2 + \frac{-x(x+1)}{x+1} + \frac{2x+2}{x+1}\\[5pt] &= x^2 - x + \frac{2x+2}{x+1}\,\textrm{.} \end{align} | 
The last quotient divides perfectly and we obtain
| \displaystyle x^2-x+\frac{2x+2}{x+1}=x^2-x+2\,\textrm{.} | 
A quick check of whether
| \displaystyle \frac{x^3+x+2}{x+1} = x^2-x+2\,\textrm{.} | 
is the correct answer is to investigate whether
| \displaystyle x^3+x+2 = (x^2-x+2)(x+1) | 
holds. If we expand the right-hand side, we see that the relation really does hold
| \displaystyle \begin{align} (x^2-x+2)(x+1) = x^3+x^2-x^2-x+2x+2 = x^3+x+2\,\textrm{.} \end{align} | 
 
		  