Lösung 3.4:1d
Aus Online Mathematik Brückenkurs 2
K (Lösning 3.4:1d moved to Solution 3.4:1d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | We start by adding and taking away |
- | < | + | <math>x^{2}</math> |
- | {{ | + | in the numerator, so that, in combination with |
+ | <math>x^{3}</math>, we obtain the expression | ||
+ | <math>x^{3}+x^{2}=x^{2}\left( x+1 \right)</math> | ||
+ | which can be simplified with the denominator | ||
+ | <math>x+1</math>, | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{x^{3}+x+2}{x+1}=\frac{x^{3}+x^{2}-x^{2}+x+2}{x+1} \\ | ||
+ | & =\frac{x^{3}+x^{2}}{x+1}+\frac{-x^{2}+x+2}{x+1}=\frac{x^{2}\left( x+1 \right)}{x+1}+\frac{-x^{2}+x+2}{x+1} \\ | ||
+ | & =x^{2}+\frac{-x^{2}+x+2}{x+1} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | The term | ||
+ | <math>-x^{2}</math> | ||
+ | in the remaining quotient needs to complemented with | ||
+ | <math>-x</math> | ||
+ | so that we get | ||
+ | <math>-x^{2}-x=-x\left( x+1 \right)</math>, which is divisible by | ||
+ | <math>x+1</math>, | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & x^{2}+\frac{-x^{2}+x+2}{x+1}=x^{2}+\frac{-x^{2}-x+x+x+2}{x+1} \\ | ||
+ | & =x^{2}+\frac{-x^{2}-x}{x+1}+\frac{2x+2}{x+1} \\ | ||
+ | & =x^{2}+\frac{-x\left( x+1 \right)}{x+1}+\frac{2x+2}{x+1} \\ | ||
+ | & =x^{2}-x+\frac{2x+2}{x+1} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | The last quotient divides perfectly and we obtain | ||
+ | |||
+ | |||
+ | <math>x^{2}-x+\frac{2x+2}{x+1}=x^{2}-x+2.</math> | ||
+ | |||
+ | |||
+ | A quick check of whether | ||
+ | |||
+ | |||
+ | <math>\frac{x^{3}+x+2}{x+1}=x^{2}-x+2.</math> | ||
+ | |||
+ | |||
+ | is the correct answer is to investigate whether | ||
+ | |||
+ | |||
+ | <math>x^{3}+x+2=\left( x^{2}-x+2 \right)\left( x+1 \right)</math> | ||
+ | |||
+ | holds. If we expand the right-hand side, we see that the relation really does hold: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \left( x^{2}-x+2 \right)\left( x+1 \right)=x^{3}+x^{2}-x^{2}-x+2x+2 \\ | ||
+ | & =x^{3}+x+2 \\ | ||
+ | \end{align}</math> |
Version vom 13:22, 26. Okt. 2008
We start by adding and taking away \displaystyle x^{2} in the numerator, so that, in combination with \displaystyle x^{3}, we obtain the expression \displaystyle x^{3}+x^{2}=x^{2}\left( x+1 \right) which can be simplified with the denominator \displaystyle x+1,
\displaystyle \begin{align}
& \frac{x^{3}+x+2}{x+1}=\frac{x^{3}+x^{2}-x^{2}+x+2}{x+1} \\
& =\frac{x^{3}+x^{2}}{x+1}+\frac{-x^{2}+x+2}{x+1}=\frac{x^{2}\left( x+1 \right)}{x+1}+\frac{-x^{2}+x+2}{x+1} \\
& =x^{2}+\frac{-x^{2}+x+2}{x+1} \\
\end{align}
The term
\displaystyle -x^{2}
in the remaining quotient needs to complemented with
\displaystyle -x
so that we get
\displaystyle -x^{2}-x=-x\left( x+1 \right), which is divisible by
\displaystyle x+1,
\displaystyle \begin{align}
& x^{2}+\frac{-x^{2}+x+2}{x+1}=x^{2}+\frac{-x^{2}-x+x+x+2}{x+1} \\
& =x^{2}+\frac{-x^{2}-x}{x+1}+\frac{2x+2}{x+1} \\
& =x^{2}+\frac{-x\left( x+1 \right)}{x+1}+\frac{2x+2}{x+1} \\
& =x^{2}-x+\frac{2x+2}{x+1} \\
\end{align}
The last quotient divides perfectly and we obtain
\displaystyle x^{2}-x+\frac{2x+2}{x+1}=x^{2}-x+2.
A quick check of whether
\displaystyle \frac{x^{3}+x+2}{x+1}=x^{2}-x+2.
is the correct answer is to investigate whether
\displaystyle x^{3}+x+2=\left( x^{2}-x+2 \right)\left( x+1 \right)
holds. If we expand the right-hand side, we see that the relation really does hold:
\displaystyle \begin{align}
& \left( x^{2}-x+2 \right)\left( x+1 \right)=x^{3}+x^{2}-x^{2}-x+2x+2 \\
& =x^{3}+x+2 \\
\end{align}