Lösung 2.2:3e
Aus Online Mathematik Brückenkurs 2
K (Lösning 2.2:3e moved to Solution 2.2:3e: Robot: moved page) |
|||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | If we differentiate the denominator in the integrand |
| - | < | + | |
| - | {{ | + | |
| + | <math>3x=\frac{3}{2}\centerdot 2x=\frac{3}{2}\left( x^{2}+1 \right)^{\prime }</math> | ||
| + | |||
| + | |||
| + | we obtain almost the same expression as in the numerator; there is a constant | ||
| + | <math>\text{2}</math> | ||
| + | which is different. We therefore rewrite the numerator as | ||
| + | |||
| + | |||
| + | <math>3x=\frac{3}{2}\centerdot 2x=\frac{3}{2}\centerdot \left( x^{2}+1 \right)^{\prime }</math>, | ||
| + | |||
| + | so the integral can be written as | ||
| + | |||
| + | |||
| + | <math>\int{\frac{\frac{3}{2}}{x^{2}+1}}\centerdot \left( x^{2}+1 \right)^{\prime }\,dx</math>, | ||
| + | |||
| + | and we see that the substitution | ||
| + | <math>u=x^{2}+1</math> | ||
| + | can be used to simplify the integral: | ||
| + | |||
| + | |||
| + | <math>\begin{align} | ||
| + | & \int{\frac{3x}{x^{2}+1}}\,dx=\left\{ \begin{matrix} | ||
| + | u=x^{2}+1 \\ | ||
| + | du=\left( x^{2}+1 \right)^{\prime }\,dx=2x\,dx \\ | ||
| + | \end{matrix} \right\} \\ | ||
| + | & =\frac{3}{2}\int{\frac{\,du}{u}}=\frac{3}{2}\ln \left| u \right|+C \\ | ||
| + | & =\frac{3}{2}\ln \left| x^{2}+1 \right|+C \\ | ||
| + | & =\frac{3}{2}\ln \left( x^{2}+1 \right)+C \\ | ||
| + | \end{align}</math> | ||
| + | |||
| + | |||
| + | In the last step, we take away the absolute sign around the argument in | ||
| + | <math>\ln </math>, because | ||
| + | <math>x^{2}+1</math> | ||
| + | is always greater than or equal to | ||
| + | <math>\text{1}</math>. | ||
Version vom 11:16, 21. Okt. 2008
If we differentiate the denominator in the integrand
\displaystyle 3x=\frac{3}{2}\centerdot 2x=\frac{3}{2}\left( x^{2}+1 \right)^{\prime }
we obtain almost the same expression as in the numerator; there is a constant
\displaystyle \text{2}
which is different. We therefore rewrite the numerator as
\displaystyle 3x=\frac{3}{2}\centerdot 2x=\frac{3}{2}\centerdot \left( x^{2}+1 \right)^{\prime },
so the integral can be written as
\displaystyle \int{\frac{\frac{3}{2}}{x^{2}+1}}\centerdot \left( x^{2}+1 \right)^{\prime }\,dx,
and we see that the substitution \displaystyle u=x^{2}+1 can be used to simplify the integral:
\displaystyle \begin{align}
& \int{\frac{3x}{x^{2}+1}}\,dx=\left\{ \begin{matrix}
u=x^{2}+1 \\
du=\left( x^{2}+1 \right)^{\prime }\,dx=2x\,dx \\
\end{matrix} \right\} \\
& =\frac{3}{2}\int{\frac{\,du}{u}}=\frac{3}{2}\ln \left| u \right|+C \\
& =\frac{3}{2}\ln \left| x^{2}+1 \right|+C \\
& =\frac{3}{2}\ln \left( x^{2}+1 \right)+C \\
\end{align}
In the last step, we take away the absolute sign around the argument in
\displaystyle \ln , because
\displaystyle x^{2}+1
is always greater than or equal to
\displaystyle \text{1}.
