Lösung 1.2:4b
Aus Online Mathematik Brückenkurs 2
K |
|||
| Zeile 1: | Zeile 1: | ||
| - | To start with, we determine the first derivative and begin by using the product rule | + | To start with, we determine the first derivative and begin by using the product rule, |
| + | {{Displayed math||<math>\begin{align} | ||
| + | \frac{d}{dx}\,\bigl[x(\sin\ln x + \cos\ln x)\bigr] | ||
| + | &= (x)'\cdot (\sin\ln x + \cos\ln x) + x\cdot (\sin\ln x + \cos\ln x)'\\[5pt] | ||
| + | &= 1\cdot (\sin\ln x + \cos\ln x) + x\cdot (\sin\ln x + \cos\ln x)'\,\textrm{.} | ||
| + | \end{align}</math>}} | ||
| - | + | We divide up the differentiation of the second term in sections and use the chain rule, | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | We divide up the differentiation of the second term in sections and use the chain rule | + | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| + | {{Displayed math||<math>\begin{align} | ||
| + | (\sin\ln x + \cos\ln x)' | ||
| + | &= (\sin\ln x)' + (\cos\ln x)'\\[5pt] | ||
| + | &= \cos\ln x\cdot (\ln x)' - \sin\ln x\cdot (\ln x)'\\[5pt] | ||
| + | &= \cos\ln x\cdot\frac{1}{x} - \sin\ln x\cdot\frac{1}{x}\,\textrm{.} | ||
| + | \end{align}</math>}} | ||
This means that | This means that | ||
| - | + | {{Displayed math||<math>\begin{align} | |
| - | <math>\begin{align} | + | \frac{d}{dx}\,\bigl[x(\sin\ln x + \cos\ln x)\bigr] |
| - | + | &= \sin \ln x + \cos \ln x + \cos \ln x - \sin \ln x\\[5pt] | |
| - | & =\sin \ln x+\cos \ln x+\cos \ln x-\sin \ln x \\ | + | &= 2\cos \ln x\,\textrm{.} |
| - | & =2\cos \ln x \\ | + | \end{align}</math>}} |
| - | \end{align}</math> | + | |
| - | + | ||
The second derivative is | The second derivative is | ||
| - | + | {{Displayed math||<math>\begin{align} | |
| - | <math>\begin{align} | + | \frac{d}{dx}\,2\cos\ln x |
| - | + | &= -2\sin\ln x\cdot (\ln x)'\\[5pt] | |
| - | & =-2\sin \ln x\ | + | &= -2\sin\ln x\cdot \frac{1}{x}\\[5pt] |
| - | \end{align}</math> | + | &= -\frac{2\sin\ln x}{x}\,\textrm{.} |
| + | \end{align}</math>}} | ||
Version vom 13:58, 15. Okt. 2008
To start with, we determine the first derivative and begin by using the product rule,
| \displaystyle \begin{align}
\frac{d}{dx}\,\bigl[x(\sin\ln x + \cos\ln x)\bigr] &= (x)'\cdot (\sin\ln x + \cos\ln x) + x\cdot (\sin\ln x + \cos\ln x)'\\[5pt] &= 1\cdot (\sin\ln x + \cos\ln x) + x\cdot (\sin\ln x + \cos\ln x)'\,\textrm{.} \end{align} |
We divide up the differentiation of the second term in sections and use the chain rule,
| \displaystyle \begin{align}
(\sin\ln x + \cos\ln x)' &= (\sin\ln x)' + (\cos\ln x)'\\[5pt] &= \cos\ln x\cdot (\ln x)' - \sin\ln x\cdot (\ln x)'\\[5pt] &= \cos\ln x\cdot\frac{1}{x} - \sin\ln x\cdot\frac{1}{x}\,\textrm{.} \end{align} |
This means that
| \displaystyle \begin{align}
\frac{d}{dx}\,\bigl[x(\sin\ln x + \cos\ln x)\bigr] &= \sin \ln x + \cos \ln x + \cos \ln x - \sin \ln x\\[5pt] &= 2\cos \ln x\,\textrm{.} \end{align} |
The second derivative is
| \displaystyle \begin{align}
\frac{d}{dx}\,2\cos\ln x &= -2\sin\ln x\cdot (\ln x)'\\[5pt] &= -2\sin\ln x\cdot \frac{1}{x}\\[5pt] &= -\frac{2\sin\ln x}{x}\,\textrm{.} \end{align} |
