Lösung 1.2:2c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | When we see this expression, we should think "root of something", | + | When we see this expression, we should think "square root of something", |
+ | {{Displayed math||<math>\sqrt{\bbox[#FFEEAA;,1.5pt]{\phantom{\cos x}}}\,\textrm{,}</math>}} | ||
- | <math>\ | + | and in order to differentiate it, we should first differentiate the outer function , "the square root of", with respect to its argument and, after that, multiply by the derivative of the inner functional expression <math>\bbox[#FFEEAA;,1.5pt]{\phantom{\cos x}} = \cos x</math>, |
- | + | {{Displayed math||<math>\frac{d}{dx}\,\sqrt{\bbox[#FFEEAA;,1.5pt]{\cos x}} = \frac{1}{2\sqrt{\bbox[#FFEEAA;,1.5pt]{\cos x}}}\cdot \bigl(\bbox[#FFEEAA;,1.5pt]{\cos x}\bigr)'\,,</math>}} | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | <math>\frac{d}{dx}\sqrt{\ | + | |
where we have used the differentiation rule | where we have used the differentiation rule | ||
- | + | {{Displayed math||<math>\frac{d}{dx}\,\sqrt{x} = \frac{d}{dx}\,x^{1/2} = \tfrac{1}{2}x^{1/2-1} = \tfrac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}\,\textrm{.}</math>}} | |
- | <math>\frac{d}{dx}\sqrt{x}=\frac{d}{dx}x^ | + | |
Thus, we obtain | Thus, we obtain | ||
- | + | {{Displayed math||<math>\frac{d}{dx}\,\sqrt{\cos x} = \frac{1}{2\sqrt{\cos x}}\cdot (-\sin x) = -\frac{\sin x}{2\sqrt{\cos x}}\,\textrm{.}</math>}} | |
- | <math>\frac{d}{dx}\sqrt{\cos x}=\frac{1}{2\sqrt{\cos x}}\ | + |
Version vom 08:15, 15. Okt. 2008
When we see this expression, we should think "square root of something",
\displaystyle \sqrt{\bbox[#FFEEAA;,1.5pt]{\phantom{\cos x}}}\,\textrm{,} |
and in order to differentiate it, we should first differentiate the outer function , "the square root of", with respect to its argument and, after that, multiply by the derivative of the inner functional expression \displaystyle \bbox[#FFEEAA;,1.5pt]{\phantom{\cos x}} = \cos x,
\displaystyle \frac{d}{dx}\,\sqrt{\bbox[#FFEEAA;,1.5pt]{\cos x}} = \frac{1}{2\sqrt{\bbox[#FFEEAA;,1.5pt]{\cos x}}}\cdot \bigl(\bbox[#FFEEAA;,1.5pt]{\cos x}\bigr)'\,, |
where we have used the differentiation rule
\displaystyle \frac{d}{dx}\,\sqrt{x} = \frac{d}{dx}\,x^{1/2} = \tfrac{1}{2}x^{1/2-1} = \tfrac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}\,\textrm{.} |
Thus, we obtain
\displaystyle \frac{d}{dx}\,\sqrt{\cos x} = \frac{1}{2\sqrt{\cos x}}\cdot (-\sin x) = -\frac{\sin x}{2\sqrt{\cos x}}\,\textrm{.} |