Lösung 1.2:2a
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
The expression is composed of two parts: first, an outer part, | The expression is composed of two parts: first, an outer part, | ||
+ | {{Displayed math||<math>\sin \bbox[#FFEEAA;,1.5pt]{\,\phantom{x^2_2}\,}</math>}} | ||
- | <math>\ | + | and then an inner part, <math>\bbox[#FFEEAA;,1.5pt]{\,\phantom{x^2_2}\,} = x^{2}\,</math>. |
- | |||
- | and then an inner part, | ||
- | <math>\left\{ \left. {} \right\} \right.=x^{2}</math>. | ||
- | |||
When we differentiate compound expressions, we first differentiate the outer part, | When we differentiate compound expressions, we first differentiate the outer part, | ||
- | <math>\sin \ | + | <math>\sin \bbox[#FFEEAA;,1.5pt]{\,\phantom{xx}\,}</math>, as if |
- | <math>\ | + | <math>\bbox[#FFEEAA;,1.5pt]{\,\phantom{xx}\,}</math> were the variable that we differentiate with respect to, and then we multiply with the derivative of the inner part <math>\bigl(\bbox[#FFEEAA;,1.5pt]{\,\phantom{xx}\,}\bigr)'</math>, so that |
- | were the variable that we differentiate with respect to, and then we multiply with the derivative of the inner part | + | |
- | <math>\ | + | |
- | + | ||
- | <math>\frac{d}{dx}\sin \ | + | {{Displayed math||<math>\frac{d}{dx}\,\sin \bbox[#FFEEAA;,1.5pt]{\,x^2\,} = \cos \bbox[#FFEEAA;,1.5pt]{\,x^2\,}\cdot \bigl(\bbox[#FFEEAA;,1.5pt]{\,x^2\,}\bigr)' = \cos x^2\cdot 2x\,\textrm{.}</math>}} |
Version vom 14:50, 14. Okt. 2008
The expression is composed of two parts: first, an outer part,
\displaystyle \sin \bbox[#FFEEAA;,1.5pt]{\,\phantom{x^2_2}\,} |
and then an inner part, \displaystyle \bbox[#FFEEAA;,1.5pt]{\,\phantom{x^2_2}\,} = x^{2}\,.
When we differentiate compound expressions, we first differentiate the outer part, \displaystyle \sin \bbox[#FFEEAA;,1.5pt]{\,\phantom{xx}\,}, as if \displaystyle \bbox[#FFEEAA;,1.5pt]{\,\phantom{xx}\,} were the variable that we differentiate with respect to, and then we multiply with the derivative of the inner part \displaystyle \bigl(\bbox[#FFEEAA;,1.5pt]{\,\phantom{xx}\,}\bigr)', so that
\displaystyle \frac{d}{dx}\,\sin \bbox[#FFEEAA;,1.5pt]{\,x^2\,} = \cos \bbox[#FFEEAA;,1.5pt]{\,x^2\,}\cdot \bigl(\bbox[#FFEEAA;,1.5pt]{\,x^2\,}\bigr)' = \cos x^2\cdot 2x\,\textrm{.} |