Lösung 1.2:4b
Aus Online Mathematik Brückenkurs 2
K (Lösning 1.2:4b moved to Solution 1.2:4b: Robot: moved page) |
|||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | To start with, we determine the first derivative and begin by using the product rule: |
| - | + | ||
| - | {{ | + | |
| - | {{ | + | <math>\begin{align} |
| - | < | + | & \frac{d}{dx}x\left( \sin \ln x+\cos \ln x \right) \\ |
| - | {{ | + | & =\left( x \right)^{\prime }\centerdot \left( \sin \ln x+\cos \ln x \right)+x\centerdot \left( \sin \ln x+\cos \ln x \right)^{\prime } \\ |
| + | & =1\centerdot \left( \sin \ln x+\cos \ln x \right)+x\centerdot \left( \sin \ln x+\cos \ln x \right)^{\prime } \\ | ||
| + | \end{align}</math> | ||
| + | |||
| + | |||
| + | We divide up the differentiation of the second term in sections and use the chain rule: | ||
| + | |||
| + | |||
| + | |||
| + | <math>\begin{align} | ||
| + | & \left( \sin \ln x+\cos \ln x \right)^{\prime }=\left( \sin \ln x \right)^{\prime }+\left( \cos \ln x \right)^{\prime } \\ | ||
| + | & =\cos \ln x\centerdot \left( \ln x \right)^{\prime }-\sin \ln x\centerdot \left( \ln x \right)^{\prime } \\ | ||
| + | & =\cos \ln x\centerdot \frac{1}{x}-\sin \ln x\centerdot \frac{1}{x} \\ | ||
| + | \end{align}</math> | ||
| + | |||
| + | |||
| + | This means that | ||
| + | |||
| + | |||
| + | <math>\begin{align} | ||
| + | & \frac{d}{dx}x\left( \sin \ln x+\cos \ln x \right) \\ | ||
| + | & =\sin \ln x+\cos \ln x+\cos \ln x-\sin \ln x \\ | ||
| + | & =2\cos \ln x \\ | ||
| + | \end{align}</math> | ||
| + | |||
| + | |||
| + | The second derivative is | ||
| + | |||
| + | |||
| + | <math>\begin{align} | ||
| + | & \frac{d}{dx}2\cos \ln x=-2\sin \ln x\centerdot \left( \ln x \right)^{\prime } \\ | ||
| + | & =-2\sin \ln x\centerdot \frac{1}{x}=-\frac{2\sin \ln x}{x} \\ | ||
| + | \end{align}</math> | ||
Version vom 14:15, 12. Okt. 2008
To start with, we determine the first derivative and begin by using the product rule:
\displaystyle \begin{align}
& \frac{d}{dx}x\left( \sin \ln x+\cos \ln x \right) \\
& =\left( x \right)^{\prime }\centerdot \left( \sin \ln x+\cos \ln x \right)+x\centerdot \left( \sin \ln x+\cos \ln x \right)^{\prime } \\
& =1\centerdot \left( \sin \ln x+\cos \ln x \right)+x\centerdot \left( \sin \ln x+\cos \ln x \right)^{\prime } \\
\end{align}
We divide up the differentiation of the second term in sections and use the chain rule:
\displaystyle \begin{align} & \left( \sin \ln x+\cos \ln x \right)^{\prime }=\left( \sin \ln x \right)^{\prime }+\left( \cos \ln x \right)^{\prime } \\ & =\cos \ln x\centerdot \left( \ln x \right)^{\prime }-\sin \ln x\centerdot \left( \ln x \right)^{\prime } \\ & =\cos \ln x\centerdot \frac{1}{x}-\sin \ln x\centerdot \frac{1}{x} \\ \end{align}
This means that
\displaystyle \begin{align}
& \frac{d}{dx}x\left( \sin \ln x+\cos \ln x \right) \\
& =\sin \ln x+\cos \ln x+\cos \ln x-\sin \ln x \\
& =2\cos \ln x \\
\end{align}
The second derivative is
\displaystyle \begin{align}
& \frac{d}{dx}2\cos \ln x=-2\sin \ln x\centerdot \left( \ln x \right)^{\prime } \\
& =-2\sin \ln x\centerdot \frac{1}{x}=-\frac{2\sin \ln x}{x} \\
\end{align}
