Lösung 1.2:2c
Aus Online Mathematik Brückenkurs 2
K (Lösning 1.2:2c moved to Solution 1.2:2c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | When we see this expression, we should think "root of something", |
- | < | + | |
- | {{ | + | |
+ | <math>\sqrt{\left\{ \left. {} \right\} \right.}</math> | ||
+ | |||
+ | |||
+ | and in order to differentiate it, we should first differentiate the outer function , "the root of", with respect to its argument and, after that, multiply by the derivative of the inner functional expression | ||
+ | |||
+ | <math>\left\{ \left. {} \right\} \right.=\cos x</math>, | ||
+ | |||
+ | |||
+ | <math>\frac{d}{dx}\sqrt{\left\{ \left. \cos x \right\} \right.}=\frac{1}{2\sqrt{\left\{ \left. \cos x \right\} \right.}}\centerdot \left( \left\{ \left. \cos x \right\} \right. \right)^{\prime }</math>, | ||
+ | |||
+ | where we have used the differentiation rule | ||
+ | |||
+ | |||
+ | <math>\frac{d}{dx}\sqrt{x}=\frac{d}{dx}x^{{1}/{2}\;}=\frac{1}{2}x^{\frac{1}{2}-1}=\frac{1}{2}x^{-\frac{1}{2}}=\frac{1}{2\sqrt{x}}</math>. | ||
+ | |||
+ | Thus, we obtain | ||
+ | |||
+ | |||
+ | <math>\frac{d}{dx}\sqrt{\cos x}=\frac{1}{2\sqrt{\cos x}}\centerdot \left( -\sin x \right)=-\frac{\sin x}{2\sqrt{\cos x}}</math> |
Version vom 13:06, 11. Okt. 2008
When we see this expression, we should think "root of something",
\displaystyle \sqrt{\left\{ \left. {} \right\} \right.}
and in order to differentiate it, we should first differentiate the outer function , "the root of", with respect to its argument and, after that, multiply by the derivative of the inner functional expression
\displaystyle \left\{ \left. {} \right\} \right.=\cos x,
\displaystyle \frac{d}{dx}\sqrt{\left\{ \left. \cos x \right\} \right.}=\frac{1}{2\sqrt{\left\{ \left. \cos x \right\} \right.}}\centerdot \left( \left\{ \left. \cos x \right\} \right. \right)^{\prime },
where we have used the differentiation rule
\displaystyle \frac{d}{dx}\sqrt{x}=\frac{d}{dx}x^{{1}/{2}\;}=\frac{1}{2}x^{\frac{1}{2}-1}=\frac{1}{2}x^{-\frac{1}{2}}=\frac{1}{2\sqrt{x}}.
Thus, we obtain
\displaystyle \frac{d}{dx}\sqrt{\cos x}=\frac{1}{2\sqrt{\cos x}}\centerdot \left( -\sin x \right)=-\frac{\sin x}{2\sqrt{\cos x}}