4.4 Übungen

Aus Online Mathematik Brückenkurs 1

Version vom 07:34, 2. Sep. 2009 von Tek (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche
       Theorie          Übungen      

Übung 4.4:1

Für welche Winkel \displaystyle \,v\, mit \displaystyle \,0 \leq v\leq 2\pi\, ist

a) \displaystyle \sin{v}=\displaystyle \frac{1}{2} b) \displaystyle \cos{v}=\displaystyle \frac{1}{2}
c) \displaystyle \sin{v}=1 d) \displaystyle \tan{v}=1
e) \displaystyle \cos{v}=2 f) \displaystyle \sin{v}=-\displaystyle \frac{1}{2}
g) \displaystyle \tan{v}=-\displaystyle \frac{1}{\sqrt{3}}

Übung 4.4:2

Löse die Gleichung

a) \displaystyle \sin{x}=\displaystyle \frac{\sqrt{3}}{2} b) \displaystyle \cos{x}=\displaystyle \frac{1}{2} c) \displaystyle \sin{x}=0
d) \displaystyle \sin{5x}=\displaystyle \frac{1}{\sqrt{2}} e) \displaystyle \sin{5x}=\displaystyle \frac{1}{2} f) \displaystyle \cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}

Übung 4.4:3

Löse die Gleichung

a) \displaystyle \cos{x}=\cos{\displaystyle \frac{\pi}{6}} b) \displaystyle \sin{x}=\sin{\displaystyle \frac{\pi}{5}}
c) \displaystyle \sin{(x+40^\circ)}=\sin{65^\circ} d) \displaystyle \sin{3x}=\sin{15^\circ}

Übung 4.4:4

Bestimme die Winkel \displaystyle \,v\, im Intervall \displaystyle \,0^\circ \leq v \leq 360^\circ\,, die die Gleichung \displaystyle \ \cos{\left(2v+10^\circ\right)}=\cos{110^\circ}\, erfüllen.


Übung 4.4:5

Löse die Gleichung

a) \displaystyle \sin{3x}=\sin{x} b) \displaystyle \tan{x}=\tan{4x}
c) \displaystyle \cos{5x}=\cos(x+\pi/5)

Übung 4.4:6

Löse die Gleichung

a) \displaystyle \sin x\cdot \cos 3x = 2\sin x b) \displaystyle \sqrt{2}\sin{x}\cos{x}=\cos{x}
c) \displaystyle \sin 2x = -\sin x

Übung 4.4:7

Löse die Gleichung

a) \displaystyle 2\sin^2{x}+\sin{x}=1 b) \displaystyle 2\sin^2{x}-3\cos{x}=0
c) \displaystyle \cos{3x}=\sin{4x}

Übung 4.4:8

Löse die Gleichung

a) \displaystyle \sin{2x}=\sqrt{2}\cos{x} b) \displaystyle \sin{x}=\sqrt{3}\cos{x}
c) \displaystyle \displaystyle \frac{1}{\cos^2{x}}=1-\tan{x}


Diagnostische Prüfung und Schlussprüfung

Nachdem Du mit der Theorie und den Übungen fertig bist, sollst Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest den Link zu den Prüfungen in Deiner Student Lounge.