Lösung 4.4:2d

Aus Online Mathematik Brückenkurs 1

Wechseln zu: Navigation, Suche

Außer, dass wir als Argument \displaystyle 5x haben, ist dies eine gewöhnliche trigonometrische Gleichung der Form \displaystyle \sin y = a\,. Wir erhalten die Lösungen, die \displaystyle 0\le 5x\le 2\pi erfüllen, indem wir den Einheitskreis zeichnen, und wir erhalten die Lösungen \displaystyle 5x = \pi/4 und \displaystyle 5x = \pi - \pi/4 = 3\pi/4\,.

[Image]

Wir bekommen die allgemeine Lösung, indem wir ein Vielfaches von \displaystyle 2\pi zu den Lösungen addieren:

\displaystyle 5x = \frac{\pi}{4} + 2n\pi\qquad\text{und}\qquad 5x = \frac{3\pi}{4} + 2n\pi\,,


Dividieren wir beide Seiten durch 5, erhalten wir die Lösungen

\displaystyle x = \frac{\pi}{20} + \frac{2}{5}n\pi\qquad\text{und}\qquad x = \frac{3\pi}{20} + \frac{2}{5}n\pi\,.