Aus Online Mathematik Brückenkurs 1
Übung 4.2:1
Verwende trigonometrische Funktionen, um die Länge der unbekannten Seite x zu bestimmen.
\displaystyle \,\,
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Übung 4.2:2
Finde eine trigonometrische Gleichung, die den Winkel \displaystyle \,v\, enthält.
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Übung 4.2:3
Berechne
a)
| \displaystyle \sin{\left(-\displaystyle \frac{\pi}{2}\right)}
| b)
| \displaystyle \cos{2\pi}
| c)
| \displaystyle \sin{9\pi}
|
d)
| \displaystyle \cos{\displaystyle \frac{7\pi}{2}}
| e)
| \displaystyle \sin{\displaystyle \frac{3\pi}{4}}
| f)
| \displaystyle \cos{\left(-\displaystyle \frac{\pi}{6}\right)}
|
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Übung 4.2:4
Berechne
a)
| \displaystyle \cos{\displaystyle \frac{11\pi}{6}}
| b)
| \displaystyle \cos{\displaystyle \frac{11\pi}{3}}
| c)
| \displaystyle \tan{\displaystyle \frac{3\pi}{4}}
|
d)
| \displaystyle \tan{\pi}
| e)
| \displaystyle \tan{\displaystyle \frac{7\pi}{6}}
| f)
| \displaystyle \tan{\left(-\displaystyle \frac{5\pi}{3}\right)}
|
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Übung 4.2:5
Berechne
a)
| \displaystyle \cos{135^\circ}
| b)
| \displaystyle \tan{225^\circ}
| c)
| \displaystyle \cos{330^\circ}
| d)
| \displaystyle \tan{495^\circ}
|
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Übung 4.2:6
Berechne die Länge der Seite \displaystyle \,x\,.
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Übung 4.2:7
Um die Breite eines Flusses zu bestimmen, messen wir die Winkel zu einem Fixpunkt auf dem Ufer von zwei verschiedenen Stellen. Wie breit ist der Fluss?
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Übung 4.2:8
Eine Stange mit der Länge \displaystyle \,\ell\, hängt an zwei Schnüren mit den Längen \displaystyle \,a\, und \displaystyle \,b\, wie im Bild. Die Schnüre bilden die Winkel \displaystyle \,\alpha\, und \displaystyle \,\beta\,. Bestimme den Winkel \displaystyle \,\gamma\,.
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Übung 4.2:9
Eine Strasse von A nach B besteht aus den drei geraden Strecken AP, PQ und QB, die jeweils 4.0 km, 12.0 km und 5.0 km lang sind. Die Winkel P und Q sind jeweils 30° und 90°. Bestimme die Länge des Luftweges zwischen A und B. (Diese Übung stammt aus einer schwedischen Abiturprüfung im November 1976.)
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen
Zeige weniger
Zeige mehr
Alles ausblenden
Alles anzeigen