3.4 Übungen

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-Answer +Antwort))
K (Robot: Automated text replacement (-Solution +Lösung))
Zeile 19: Zeile 19:
|width="33%" | <math>3e^x=7\cdot2^x</math>
|width="33%" | <math>3e^x=7\cdot2^x</math>
|}
|}
-
</div>{{#NAVCONTENT:Antwort|Antwort 3.4:1|Solution a|Solution 3.4:1a|Solution b|Solution 3.4:1b|Solution c|Solution 3.4:1c}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 3.4:1|Lösung a|Lösung 3.4:1a|Lösung b|Lösung 3.4:1b|Lösung c|Lösung 3.4:1c}}
===Übung 3.4:2===
===Übung 3.4:2===
Zeile 32: Zeile 32:
|width="33%" | <math>3e^{x^2}=2^x</math>
|width="33%" | <math>3e^{x^2}=2^x</math>
|}
|}
-
</div>{{#NAVCONTENT:Antwort|Antwort 3.4:2|Solution a|Solution 3.4:2a|Solution b|Solution 3.4:2b|Solution c|Solution 3.4:2c}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 3.4:2|Lösung a|Lösung 3.4:2a|Lösung b|Lösung 3.4:2b|Lösung c|Lösung 3.4:2c}}
===Übung 3.4:3===
===Übung 3.4:3===
Zeile 46: Zeile 46:
|width="50%" | <math>\ln{x}+\ln{(x+4)}=\ln{(2x+3)}</math>
|width="50%" | <math>\ln{x}+\ln{(x+4)}=\ln{(2x+3)}</math>
|}
|}
-
</div>{{#NAVCONTENT:Antwort|Antwort 3.4:3|Solution a|Solution 3.4:3a|Solution b|Solution 3.4:3b|Solution c|Solution 3.4:3c}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 3.4:3|Lösung a|Lösung 3.4:3a|Lösung b|Lösung 3.4:3b|Lösung c|Lösung 3.4:3c}}

Version vom 09:30, 22. Okt. 2008

 

Vorlage:Not selected tab Vorlage:Selected tab

 


Übung 3.4:1

Solve the equation

a) \displaystyle e^x=13 b) \displaystyle 13e^x=2\cdot3^{-x} c) \displaystyle 3e^x=7\cdot2^x

Übung 3.4:2

Solve the equation

a) \displaystyle 2^{\scriptstyle x^2-2}=1 b) \displaystyle e^{2x}+e^x=4 c) \displaystyle 3e^{x^2}=2^x

Übung 3.4:3

Solve the equation

a) \displaystyle 2^{-x^2}=2e^{2x} b) \displaystyle \ln{(x^2+3x)}=\ln{(3x^2-2x)}
c) \displaystyle \ln{x}+\ln{(x+4)}=\ln{(2x+3)}