Lösung 3.4:1a

Aus Online Mathematik Brückenkurs 1

Wechseln zu: Navigation, Suche

Wir logarithmieren beide Seiten mit dem natürlichen Logarithmus:

\displaystyle \ln e^x = \ln 13\,\textrm{.}

Danach verwenden wir das Logarithmusgesetz \displaystyle \ln a^{b} = b\cdot \ln a und erhalten dadurch

\displaystyle x\cdot \ln e = \ln 13\,.

Wir lösen die Gleichung für \displaystyle x:

\displaystyle x = \frac{\ln 13}{\ln e} = \frac{\ln 13}{1} = \ln 13\,\textrm{.}


Hinweis: Eigentlich müssen wir sicherstellen, dass beide Seiten positiv sind, bevor wir logarithmieren, weil der Logarithmus von negativen Zahlen nicht definiert ist. Nachdem wir die Gleichung

\displaystyle e^x=13

haben, sehen wir jedoch direkt, dass die rechte Seite positiv ist. Die linke Seite ist auch positiv, nachdem jede Potenz von e positiv ist.